选择特殊符号
选择搜索类型
请输入搜索
它是由BG1、BG2一对特性相同的晶体管组成,而且电路元件也都是对称的。输入信号人别为Ui1、Ui2;单端输出信号分别是Uc1、Uc2;双端输出为UC1与UC2之差,即UO=Uc1-Uc2差动电路具有下列特点:
具有抑制零点漂移能力
差动电路由于管特性相同和电路元件对称,所以当温度升高时,两管的集电极电流将得到同样的增量,即△IC1=△IC2而双端输出为UO=△IC1RC-△IC2RC=0,所以输出没有零点漂移。
共模输入时具有抑制放大能力
通常把幅度相等,相位相同的一对输入信号,称为共模信号,由下列电路图A可见,当Ui1=Ui2时,在对称条件下,则双端输出Uo=KUil-KUi2=0,
差模输入时具有放大能力
通常把幅度相等,相位相反的一对输入信号,称为差模信号。当Ui1=-Ui2差模输入时,两面三刀管集电极输出分别为Uc1=-KUi1、Uc2=-KUi2;所以,差模放大倍数Kud:Kud=(Uc1-Uc2)/(Ui1-Ui2)=(-Ui1K-Ui1K)/2Ui1=-K=(-)(hfeRc)/(Rs hie)
由于差动电路的双端输入电压、双端输出电压均比单管共射放大电路多了一倍,所以差模放大倍数Kud与单管共射电路的放大倍数相同
为提高抑制零漂能力,应使共模放大倍数越小越好,差模放大倍数越大越好,因而利用共模抑制比CMRR*=Kud/Kuc作为评价差动放大电路性能好坏的重要指标。
具有稳定静态工作点的能力
射极度电阻Re对共模信号及温漂电平均有很强的负反馈作用。例如在温度升高时,IC1、IC2都同时增加,并产生下列负反馈过程:
结果使IC1、IC2的实际变化相对地减小,这里Re起着恒流作用,从而稳定静态工作点,显然Re越大,恒流作用也越大,抑制零漂的能力也就越强,引入辅助电,以抵消Re的压隆。使射极度对地电位能维持正常的数值。值得注意的是,对差模信号,Re不起负反馈作用,因此,它不会降低差模信号的放大倍数。
低噪声宽带直流放大器 在中频和视频放大器中均具有广泛的应用,这类电路主要用于对视频信号、脉冲信号或射频信号的放大,放大信号带宽可从直流到几兆赫兹甚至到几十兆赫兹,在信号处理中具有广泛应用。尤其是近年来超宽带(Ultra-Wideband,UWB )技术在隐蔽通信和目标探测领域的迅猛发展使得UWB信号对带宽要求也进一步提高,所以接收机前端所需的信号预处理电路必须是低噪声超宽带放大器。
超宽带直流放大器的性能直接影响信号检测和处理的精度,而低噪声、低零点漂移、超宽带设计一直是该类放大器关注的重点,具有重要的工程意义和实用价值。Bevilacqua等和VaSIC等设计了一种能够实现超宽带放大和具有低噪声特性的放大器,但是没有解决零点漂移和高噪声系数的问题。
本文设计并实现了一款由低噪声放大器、高性能滤波网络、程控零漂校正电路、单片机控制系统和精密电源构成的低噪声超宽带直流放大器,较好地解决了放大器的超宽带与低噪声、高阻带衰减与低通带起伏矛盾和高增益精密控制、直流零漂补偿校正等问题,具有推广应用价值。
低噪声超宽带方案
低噪声超宽带直流放大器系统方案:整个放大器系统由主放大器、滤波网络、零漂校正电路、控制系统和高性能供电电源五部分组成。其中主放大器由低噪声精密前级放大、增益控制、中间级放大和末级推挽输出的功率驱动电路构成。低噪声精密前级放大采用超低噪声集成运放芯片,实现了整机低噪声特性;单片机控制压控增益放大器实现了增益调节;由低噪声、高速集成运放构成的中间级放大提高了整机增益;末级功率驱动则采用双运放构成推挽输出,提高了整机负载能力。高性能滤波器采用无源滤波器方案构成双通道八阶巴特沃斯LC低通滤波器,波段可程控切换。零点漂移校正通常有模拟校正和数字校正两种方案,本机采用数字校正方案对整机电路零点漂移进行校正,提高了校正精度。控制系统则以单片机AT89C52为中心,实现整机增益程序控制及零点漂移数字控制。供电系统采用混合稳压,经过退藕滤波、二级稳压和精密稳压后,为整机提供精密低噪声的直流工作电源。
增益程序控制
增益控制是放大电路的增益随外部控制信号的变化而改变的控制方法。本设计采用增益程序控制,通过外部键盘操作设置增益的加减,简单且易于实现。选用电压增益控制放大器VCA810,通过单片机控制数字电位器X9C103调整端输出电压来改变VCA810增益控制引脚电压在0一2V之间变化,从而实现整机增益0-80 dB范围内1 dB步进可调。
直流零点漂移校正
直流零点漂移是指直流放大器工作点的不规则渐进缓慢变化。增益越大,放大级数越多,输出端的零漂现象越严重,严重时甚至使运放饱和而无法正常工作。因此,为保证直流放大器稳定工作必须设计直流零点漂移校正电路。本设计通过AJD采样,将检波到的末级直流零漂送往单片机,选择合适基准电压,利用单片机控制数字电位器X9C102在调零端加入补偿校正电压,从而实现直流零点漂移的自动调零。
高性能网络滤波
滤波器在系统中主要起降低噪声、滤除带外干扰、提高系统稳定性的作用。在本设计中两个低通滤波器的通频带分别为。-5 MHz和-10 MHz,并且要求通带内起伏<1 dB,阻带衰减40 dB/2fc,因此必须采用精密电感电容来实现高阶无源LC低通滤波器。因为LC滤波器计算复杂,参数难于设定,所以利用Filter Solutions软件进行了计算机辅助设计。
单端式直流放大器需要解决级间直流电平配置问题,利用电阻Re2拉低BG2的射极电位以满足直流电平配置要求(即令Ube2=Uc1-Ue2).利用D1及D2作电平配置。使BG2、BG3的偏听偏信置电压分别为Ube2=0.3伏、Ube3=0.45伏。D3起保护作用,避免使BG1基极受到过大的反压,如果前级输出电压主和后级输入电压相差较大,可以利用硅稳压管的稳定电压来代替硅二极管的作用电路利用较大的Rc1、Rc2来提高集电极电压,以实现前后级直流电平的配置。电路利用PNP(BG1和BG3)与NPN(BG2)的极性相反来进行电平配置于,BG1的输出电流是BG2的输入电流,BG2的输出电流是BG2的输出电流是BG3输入电流,较好地实现了级间耦合,上述四种电路的最大缺点是零点漂移大。
怎么要这么问呢?差分放大器 = 差动放大器 只是表达文字上的不同而以.
差动放大器(differential amplifier) 将两个对称放大器件接在一起,理想情况下,输出信号u0只与一对输入信号uI1、uI2的差值有关的放大单元,又称差动放大器。图中输入信号可看成由...
你好同学。首先明确一点,如果不管运放内部结构,你都可以用“虚短"和“虚断"和KCL定律来分析普通单端运放和你说的“双端差分放大器",准确的名字是"全差分运算放大...
直流放大器常用于测量仪表。在高精度电位测量和生物电与物理电测量中(见生物医学核电子仪器),电信号往往很弱,而且变化缓慢,含有直流成分,经放大后才便于检测、记录和处理。此外,在许多情况下,被测信号源的内阻高,要求放大器具有高增益和高输入阻抗。具有这种特性的直流放大器也适合用作运算放大器。
直接耦合的晶体管或电子管放大器都可作为直流放大器。这类放大器也靠直流电源供电。当无信号输入时,理想的直流放大器的输出电位应该是零、或者是一个称之为放大器直流零点的参考电位。但是实际上,由于电源电压的波动和诸如温度等环境因素的改变,以及电子元件、器件的老化,这个参考电位会随放大器特性参数的改变而发生变化。这样,放大器的输出中就不可避免地含有一个称为零点漂移的不固定误差。在多级放大器直接耦合的情况下,前级的零点漂移会被后面各级渐次放大,结果便会与被放大的有用信号相混淆,影响放大器的性能。最大限度地克服零点漂移,是直流放大器设计中的一个重要目标。
直流放大器的类型很多。直接耦合的单管放大器是最简单的一种。这种放大器的缺点是零点漂移大。
双通道斩波式直流放大器的原理图(图1)。它由斩波通道、高频通道和主放大器三部分组成。被测信号中的直流分量(包括缓变分量)和高频分量,分别经斩波通道和高频通道处理后由主放大器相加。经过斩波通道的信号在被放大之前,先被“斩切”成方波,经交流放大以后再由解调器恢复为直流。交流放大器和低通滤波器不会产生零点漂移,只要斩波器的“通”、“断”不引入残存电压和漏电流,整个放大器基本上不会产生零点漂移。高频通道使信号频率较高的分量直接经主放大器输出,能起补偿和加宽频带的作用。斩波器的好坏对直流放大器的性能影响很大。早期的机械振子斩波器具有理想的开关特性,但工作频率只有几百赫,而且寿命短。现代的以场效应晶体管为主构成的斩波器具有良好的性能,得到了广泛的应用。
斩波式直流放大器作为运算放大器,曾在模拟计算机中发挥过重要作用,后来主要用于高精度的测试系统。集成式运算放大器可以直接用于线性直流放大,使用比较广泛。
能放大直流信号的放大器叫直流放大器。
直流微电流前置放大器的研究
介绍了一种直流微电流放大器的设计,先通过原理分析,指出应重点注意的一些关键性问题及提高信噪比的途径。并以此设计了实用电路,给出测试方法及测试数据。该放大器具有分辨率高、响应快、漂移低、稳定性好以及价格低廉等优点,非常适合光电流、生物电流及射线电流测量。
电荷放大器-放大器
五、电荷放大器 电荷放大器主要由一个高增益反向电压放大器和电容负反馈组成。输入端的 MOSFET 或 J-FET 提供高绝缘性能,确保极低的电流泄露。 电荷放大器将压电传感器产生的电荷转换为成比例的电压, 用来作为监测和控制过程的 输入量。电荷放大器主要由一个具有高开环增益和电容负反馈的 MOSFET( 半导体场效应晶 体管 )或 JFET(面结型场效应晶体管 )的反向电压放大器组成, 因此它的输入产生高绝缘阻抗, 会引起少量电流泄漏。忽略 Rt 和 Ri,输出端电压为: )( 1 1 1 crt r r o CCC AC C Q U 对于足够高的开环增益,系数 1/AC 接近于零。因此可以忽略电缆和传感器的电容,输 出电压仅由输入端电压和量程电容决定。 r o C QU 电荷放大器可看成是电荷积分器, 它总是在量程电容两端以大小相等, 极向相反的电荷 补偿传感器产生的电荷。 量程电容两端
电子电压表分模拟型电压表(简称电子电压表)和数字型电压表两大类。
由放大器、衰减器(分压器)、检波器、表头指示器和电源组成。直流电压表 (图1a)是交流电压表和万用表的基础。衰减器的作用是改变量程和调节信号电平,使其适配于直流放大器工作电平。直流放大器的作用,是提高输入阻抗、灵敏度和耐过载能力。直流放大器有直接耦合型和斩波器型。前者电路简单、成本低,但零点漂移严重,不适用于高灵敏电压表;后者适用于高灵敏直流电压表,但线路较复杂、成本高。常用的斩波器有光敏电阻型、机械继电器型、场效应管型和振动器 型。表头指示器采用张带结构动圈式电流表后,精确度和抗冲击能力有明显改善。交流电压是靠检波器或热电偶将交流电压转换为直流电压后,再用直流电压表测量的。在电压计量中还可采用测热电阻法或直流补偿法(见电压测量)。交流电压表按电路结构分检波放大型和放大检波型 (图1b,c)。交流电压表虽用有效值刻度,但结构上大多采用峰值或平均值检波器,按正弦波因子折算成有效值。因此,在测量非正弦波电压时必然产生波形误差,只有用热偶转换器才能得出真有效值。
现代电子电压表广泛采用深度负反馈技术,以改善刻度的线性度,并削弱电源起伏、环境温度变化和元件参数参差对电压表性能的影响。新线路技术改善了电压表的性能并扩大了应用范围,如采样和锁相技术提高了灵敏度,扩大了频程和检测相差(如矢量电压表);又如用锁定放大器、同步检波器来测量微弱电压等。 电子电压表
数字电压表和数字计数器是数字型测量仪器的基础和典型代表。数字电压表的核心是模拟-数字转换器。模-数转换电路分为积分型与非积分型两类。伺服连续比较型、逐次逼近比较型、斜波型和阶梯波型属非积分型;电压-频率变换型、双斜率电压-时间变换型和脉宽调制型都属积分型。双斜率电压-时间变换器 (图2a)性能较好,其精确度只取决于基准电压和精确度,而积分元件和振荡器只要求频率稳定,而绝对值对变换器精确度并无影响,因而能大大简化生产和调试过程。它的工作原理是: 输入信号ui在T1时间内向C1充电,充电斜率正比于ui,图中T1=100毫秒,由1兆赫振荡器和五位计数器及逻辑控制电路来控制。控制电路将计数器置零后,S2断开,S1接通,ui向C1电,计数器开始计数。记满 5位 (103×1微秒=100毫秒)时即送出一个进位脉冲,通过逻辑控制电路使S1接通基准电压,计数器输出进位脉冲后自动置零,开始继续计数。基准电压的幅度恒定不变且极性与ui相反,所以C1上的电荷以恒定斜率放电。当C1上电荷放完为零时,运算放大器的输出电压u0等于零,检零器送出信号至逻辑控制器,关闭"与"门,计数器读数正比于放电时间T2,即正比于输入电压ui。图2b为双斜率电压-时间转换器的电压-时间关系图。
运算放大器是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。
1.用接在电阻输入端子上的毫安表测量桥臂电流,其值应为0.05mA。
2.直流放大器开环状态下,调整零点迁移电位器,使变送器输出电流为0.5~1.5mA。
3.输入50μV信号,调整放大器开环增益电位器,使变送器输出为9.5~10mA。
4.输入信号为电势的变送器,校验时用的补偿电阻RCu应换用锰铜电阻,其阻值按下表选定。