选择特殊符号
选择搜索类型
请输入搜索
在本征半导体中只发生热激发时,电子数目等于空穴数目,这时热平衡载流子浓度为
式中m0为电子质量,kg;mn*为电子有效质量,kg; mp*为空穴有效质量,kg;k为玻耳兹曼常数,J/K;Eg为禁带宽度,eV;ni为本征载流子浓度,cm-3;T为绝对温度,K。
对于杂质半导体,N型半导体中的电子和P型半导体中的空穴称为多数载流子(简称多子),而N型半导体中的空穴和P型半导体中的电子称为少数载流子(简称少子)。在强电离的情况下,N型半导体中多子浓度nn及少子浓度pn分别为
P型半导体中多子浓度pp及少子浓度np分别为
上二式中ND为施主杂质浓度,cm-3;NA为受主杂质浓度,cm-3。
如果对半导体施加外界作用(如用光的或电的方法),破坏了热平衡条件,使半导体处于与热平衡状态相偏离的状态,则称为非平衡状态。处于非平衡状态的半导体,其载流子比平衡状态时多出来的那一部分载流子称为非平衡载流子。在N型半导体中,把非平衡电子称为非平衡多数载流子,非平衡空穴称为非平衡少数载流子。对P型半导体则相反。在半导体器件中,非平衡少数载流子往往起着重要的作用。
在半导体中载运电流的带电粒子——电子和空穴,又称自由载流子。在一定温度下,半导体处于热平衡状态,半导体中的导电电子浓度n0和空穴浓度p0都保持一个稳定的数值,这种处于热平衡状态下的导电电子和空穴称为热平衡载流子。
"载流子" 在学术文献中的解释:
1、不论是N型半导体中的自由电子,还是P型半导体中的空穴,它们都参与导电,统称为“载流子”.“载流子”导电是半导体所特有的。
2、关于气体导电众所周知,导体之所以容易导电,是因为“导体中存在大量的可以自由移动的带电物质微粒,称为载流子。在外电场的作用下,载流子作定向运动,形成明显的电流”。
如果两种推算方法均比较可靠的话,取大值。如果实测暴雨资料不太可靠的话,采用水文站实测流量资料。没有取平均值的说法。
电 学 部 分】 1、电流强度:I=Q电量/t 2、电阻:R=ρL/S {ρ:电阻率(Ω??m),L:导体的长度(m),S:导体横截面积(m2)} 3、欧姆定律:I=U/R 4...
这个比较复杂,,你可以找一些懂风水的设计师帮你推算
载流子就是带有电荷、并可运动而输运电流的粒子,包括电子、离子等。半导体中的载流子有两种,即带负电的自由电子和带正电的自由空穴。实际上,空穴也就半导体中的价键空位,一个空位的运动就相当于一大群价电子的运动;只不过采用数量较少的空穴这个概念来描述数量很多的价电子的运动要方便得多。所以,从本质上来说,空穴只是一大群价电子的另一种表述而已。
载流子寿命life time of carriers
非平衡载流子在复合前的平均生存时间,是非平衡载流子寿命的简称。在热平衡情况下,电子和空穴的产生率等于复合率,两者的浓度维持平衡。在外界条件作用下(例如光照),将产生附加的非平衡载流子,即电子—空穴对;外界条件撤消后,由于复合率大于产生率,非平衡载流子将逐渐复合消失掉,最后回复到热平衡态。非平衡载流子浓度随时间的衰减规律一般服从exp(-t/τ)的关系,常数τ表示非平衡载流子在复合前的平均生存时间,称为非平衡载流子寿命。在半导体器件中,由于非平衡少数载流子起主导作用,因此τ常称为非平衡少数载流子寿命,简称少子寿命。τ值范围一般是10-1~103μs。复合过程大致可分为两种:电子在导带和价带之间直接跃迁,引起一对电子—空穴的消失,称为直接复合;电子—空穴对也可能通过禁带中的能级(复合中心)进行复合,称为间接复合。每种半导体的τ并不是取固定值,将随化学成分和晶体结构的不同而大幅度变化,因此,寿命是一种结构灵敏参数。τ值并不总是越大越好。对于Si单晶棒和晶体管的静态特性来说,希望τ值大些。但是,对于在高频下使用的开关管,却往往需要掺杂(扩散金),以增加金杂质复合中心,降低τ值,提高开关速度。在电力电子器件生产中,常用电子束辐照代替掺金,降低τ值。在Si和GaAs材料、器件和集成电路生产过程中,τ值是必须经常检测的重要参数。
载流子,是承载电荷的、能够自由移动以形成电流的物质粒子。半导体的性质跟导体和绝缘体不同,是因为其能带结构不同;而半导体的导电能力可以控制,主要是因为其载流子的种类和数量与导体和绝缘体不同,并且可以受到控制,其调节手段就是“掺杂”,即往纯净的半导体中掺入杂质,来改变其载流子数量、分布和运动趋势,从而改变整体导电性能。
绝缘体和金属导体的载流子是电子,而半导体除了电子外,还有一种载流子叫空穴。另外还有正离子、负离子也都带有电荷,但是在半导体中,它们一般不会流动,所以认为半导体的载流子就是电子和空穴这两种。
电子作为载流子容易理解,因为物质中的原子是由原子核和电子组成的,在一定条件下挣脱原子核束缚的自由电子可以运动,因而产生电流。而所谓空穴,就是由于电子的缺失而留下的空位。这就好像车与车位的关系,假设有一排共5个车位,从左边开始按顺序停了4辆车,最右边有1个空位,如果最左边的车开到最右边的空位上去,那么最左边的车位就空出来了。看起来好像是空位从右边到了左边,这是一种相对运动,车从左到右的移动,相当于空位从右到左的移动。同样道理,带负电的电子的运动,可看作是带正电的空穴的反方向运动。在没有杂质的纯净半导体中,受热激发产生的移动的电子数量和空穴数量是相等的,因为带负电的电子和带正电的空穴会进行复合,在数量大致相等的情况下,“产生”和“复合”会达到一个动态平衡,这样宏观上看来并没有产生有效电流。为了改善其导电性能,就引入了掺杂手段。
对集成电路来说,最重要的半导体材料是硅。硅原子有4个价电子,它们位于以原子核为中心的四面体的4个顶角上。这些价电子会与其他硅原子的价电子结合成共价键,大量的硅原子以这种方式互相结合,形成结构规律的晶体。如果给它加入砷(或磷),砷最外层有5个电子,其中4个电子也会跟硅原子的4个价电子结合成共价键,把砷原子固定在硅材料的晶格中。此时会多出1个自由电子,这个电子跃迁至导带所需的能量较低,容易在硅晶格中移动,从而产生电流。这种掺入了能提供多余电子的杂质而获得导电能力的半导体称为N型半导体,“N”为Negative,代表带负电荷的意思。如果我们在纯硅中掺入硼(B),因为硼的价电子只有3个,要跟硅原子的4个价电子结合成共价键,就需要吸引另外的1个电子过来,这样就会形成一个空穴,作为额外引入的载流子,提供导电能力。这种掺入可提供空穴的杂质后的半导体,叫做P型半导体,“P”是Positive,代表带来正电荷的意思。
需要注意的是,掺入杂质后的半导体中仍然同时具有电子和空穴这两种载流子,只是各自数量不同。在N型半导体中,电子(带负电荷)居多,叫多数载流子,空穴(带正电荷)叫少数载流子。在P型半导体中,则反之:空穴为多数载流子,电子为少数载流子;可以分别简称为“多子”、“少子”。2100433B
预应力张拉推算公式
张拉与压浆注意事项 一、油压表的计算方法 应力值 =设计锚下控制应力 *分次张拉的百分比 千斤顶出力值 =(应力值 *钢绞线截面积 *钢绞线股数) /1000 将千斤顶出力值代入千斤顶出力值 Y(KN) -油压( Mpa)关系方程 (注意看清方程中的 Y是出力值还是压力值) 应力值查看图纸预应力钢筋束构造图中设计的锚下控制应力值推算 附(钢绞线截面积查看钢绞线 GBT5224-2003预应力混凝土用钢绞线规 范)钢绞线对照此规范查看钢绞线截面积 (张拉需出据钢绞线送检报告、锚具、夹片报告,千斤顶、油泵与油 压表需出具配套标定书) 张拉前和张拉过程中的注意事项 (查看图纸要求是单端张拉还是两端张拉)施工前: 1、检查梁是否 达到设计要求强度,送试块或用回弹仪测强度,(公路桥涵规范规定是 达到 75%方可进行张拉。) 2、检查钢绞线有无锈蚀,无硬伤。 3、检查 进油管和出油管有无破损,油
由地区经验公式推算小型引水式水电站的洪峰流量
桂坑一级水电站建于1989年十月,本次由于该水电站进行技术改造需进行推求电站引水陂处的设计洪峰流量。本文介绍由地区经验公式计算洪峰流量的方法来解决这一问题。
电子运动速度等于迁移率乘以电场强度
迁移率主要影响到晶体管的两个性能:
一是和载流子浓度一起决定半导体材料的电导率(电阻率的倒数)的大小。迁移率越大,电阻率越小,通过相同电流时,功耗越小,电流承载能力越大。由于电子的迁移率一般高于空穴的迁移率,因此,功率型MOSFET通常总是采用电子作为载流子的n沟道结构,而不采用空穴作为载流子的p沟道结构。
二是影响器件的工作频率。双极晶体管频率响应特性最主要的限制是少数载流子渡越基区的时间。迁移率越大,需要的渡越时间越短,晶体管的截止频率与基区材料的载流子迁移率成正比,因此提高载流子迁移率,可以降低功耗,提高器件的电流承载能力,同时,提高晶体管的开关转换速度。
一般来说P型半导体的迁移率是N型半导体的1/3到1/2.。
迁移率是衡量半导体导电性能的重要参数,它决定半导体材料的电导率,影响器件的工作速度。对于载流子迁移率已有诸多文章对载流子迁移率的重要性进行了研究 。迁移率
式中
迁移率是反映半导体中载流子导电能力的重要参数,同样的掺杂浓度,载流子的迁移率越大,半导体材料的导电率越高。迁移率的大小不仅关系着导电能力的强弱,而且还直接决定着载流子运动的快慢。它对半导体器件的工作速度有直接的影响。
电导率和迁移率之间的关系为
在恒定电场的作用下,载流子的平均漂移速度只能取一定的数值,这意味着半导体中的载流子并不是不受任何阻力,不断被加速的。事实上,载流子在其热运动的过程中,不断地与晶格、杂质、缺陷等发生碰撞,无规则的改变其运动方向,即发生了散射。无机晶体不是理想晶体,而有机半导体本质上既是非晶态,所以存在着晶格散射、电离杂质散射等,因此载流子迁移率只能有一定的数值。
渡越时间(TOP)法适用于具有较好的光生载流子功能的材料的载流子迁移率的测量,可以测量有机材料的低迁移率。
在样品上加适当直流电压,选侧适当脉冲宽度的脉冲光,通过透明电极激励样品产生薄层的电子一空穴对。空穴被拉到负电极方向,作薄层运动。设薄层状况不变,则运动速度为μE。如假定样品中只有有限的陷阱,且陷阱密度均匀,则电量损失与载流子寿命τ有关,此时下电极上将因载流子运动形成感应电流,且随时间增加。在t时刻有:
若式中L为样品厚度电场足够强,
在
霍尔效应法主要适用于较大的无机半导体载流子迁移率的测量。
将一块通有电流I的半导体薄片置于磁感应强度为B的磁场中,则在垂直于电流和磁场的薄片两端产生一个正比于电流和磁感应强度的电势U,这称为霍尔效应。由于空穴、电子电荷符号相反,霍尔效应可直接区分载流子的导电类型,测量到的电场可以表示为
通过监控电晕充电试样的表面电压衰减来测量载流子的迁移率。充电试样存积的电荷从顶面向接地的底电极泄漏,最初向下流动的电荷具有良好的前沿,可以确定通过厚度为L的样品的时间,进而可确定材料的
辐射诱发导电率(SIC)法适合于导电机理为空间电荷限制导电性材料。
在此方法中,研究样品上面一半经受连续的电子束激发辐照,产生稳态SIC,下面一半材料起着注入接触作用。然后再把此空间电荷限制电流(SCLC)流向下方电极。根据理论分析SCLC电导电流与迁移率的关系为
测量电子束电流、辐照能量和施加电压函数的信号电流,即可推算出
将被测量的半导体薄膜放在有压电晶体产生的场表面波场范围内,则与场表面波相联系的电场耦合到半导体薄膜中并且驱动载流子沿着声表面波传输方向移动,设置在样品上两个分开的电极检测到声一电流或电压,表达式为
式中P为声功率,L为待测样品两极间距离,
在极性完全封闭时加外电场,离子将在电极附近聚集呈薄板状,引起空间电荷效应。当将外电场极性反转时,载流子将以板状向另一电极迁移。由于加在载流子薄层前、后沿的电场影响,因而在极性反转后t时间时,电流达到最大值。t相当于载流子薄层在样品中行走的时间,结合样品的厚度、电场等情况,即可确定
本方法主要适用于工作于常温下的MOSFET反型层载流子迁移率的测量。
对于一般的MOSFET工作于高温时,漏源电流Ids等于沟道电流Ich与泄漏电流Ir两者之和,但当其工作于常温时,泄漏电流Ir急剧减小,近似为零,使得漏源电流Ids即为沟道电流Ich。因此,对于一般的MOSFET反型层载流子迁移率,可以根据测量线性区I—V特性求的。
综上共指出了7种载流子迁移率的测量方法,除此之外,还可采用漂移实验、分析离子扩散、分析热释电流极化电荷瞬态响应等方法进行载流子迁移率的测量。 2100433B