选择特殊符号
选择搜索类型
请输入搜索
译者序
原书序
原书前言
致谢
本书作者
贡献者列表
第1章 电力行业概况
第2章 智能电网是什么?为什么这时提出?
第3章 智能电网技术
第4章 智能电网的发展障碍及成功的关键因素
第5章 全球智能电网计划
第6章 智能电网:未来之路在何方? 2100433B
本书全面阐述了当前智能电网领域的基本理念、最新技术、工业标准和相关政策法规,以及智能电网在全球范围内的实践情况,使读者能对智能电网这一当今电力工业界的热门话题建立起全局性的概念。书中的智能电网不是对当前电力系统的简单修补和数字化,而是对电力系统的各个方面都有更新换代的要求,所涉及的范围相当广泛。本书通过大量技术细节的介绍,辅之以详尽直观的图表,使对电力系统任一侧面感兴趣的读者都能获得大量有价值的信息,进而理解和把握相关的知识,乃至以之为基础对相应领域进行更加深入的研究。
可以一样可以不一样,有时投标文件会比招标文件多,但内容必须都是招标文件要求提供的内容。
能采用数字化的方式清晰表述电网对象、结构、特性及状态,实现各类信息的精确高效与传输,从而实现电网信息的高度集成、分析和利用。
施工组织设计. 1 1.总体施工组织布置及规划. 1 1.1.施工组织设计编制说明. 1 l.1.1.编制依据. &...
智能电网用户终端解决方案
本文提出一种智能电网的用户终端解决方案的可实施架构,目的是实现可以几乎不需要修改现存电力分布网络的情况下,便能与其整合到一起的系统。该系统由2种终端用户现场设备组成:一个称为Power Hub的中央处理单元,以及一个称为Slave的智能开关,终端用户的所有电气设备需与其连接。这种手段能够为很多种基于智能电网应用服务,如使用内建条款限制消费者电能使用,实施预付费计费计划,能源市场交易等。
智能电网光纤通信ODN解决方案 (2)
智能电网光纤通信ODN解决方案 (2)
第1部分 智能电网模型及其通信架构
第1章 智能电网的通信网络:以架构的角度来看 3
1.1 引言 3
1.2 智能电网的概念模型 4
1.3 智能电网的通信基础设施 5
1.3.1 家庭局域网 7
1.3.2 邻域网 7
1.3.3 广域网 7
1.3.4 企业网 7
1.3.5 外部网 8
1.4 互操作性问题 8
1.5 通信基础设施在智能电网中的作用 10
1.5.1 用户前端 10
1.5.2 核心通信网 11
1.5.3 最后一英里连接 14
1.5.4 控制中心 15
1.5.5 传感器与执行器网络 16
1.6 智能电网中通信基础设施的安全性与隐私性 17
1.6.1 组件安全 17
1.6.2 协议安全 18
1.6.3 网络安全 18
1.7 开放性问题及未来研究方向 19
1.7.1 开销可感知的通信和网络基础设施 19
1.7.2 服务质量框架 19
1.7.3 最佳网络设计 19
1.8 总结 20
参考文献 20
第2章 智能电网网络化控制新模型 27
2.1 引言 27
2.2 当前电力系统管理操作情况 27
2.2.1 当前电力系统管理操作 28
2.2.2 数据采集与监视控制系统 29
2.2.3 电力系统控制的基本模型 30
2.2.4 现有的电网控制技术 32
2.2.5 网络化控制的固有困难 33
2.3 增强型智能电网的测量功能 34
2.3.1 状态估计 34
2.3.2 广域测量系统和GridStat 35
2.4 需求侧管理和需求响应:经济、绿色配电的关键 38
2.4.1 中央电力市场 39
2.4.2 实时定价 41
2.4.3 直接负载控制 43
2.4.4 网络边缘设计的可能性和挑战 44
2.5 总结 45
参考文献 45
第3章 智能电网需求侧管理中的机遇和挑战 52
3.1 引言 52
3.2 系统模型 53
3.3 能耗调度模型 53
3.3.1 住宅负载调度模型 54
3.3.2 能耗调度问题阐述 54
3.3.3 能耗调度算法 56
3.3.4 性能估计 57
3.4 采用效用函数的能耗控制模型 58
3.4.1 用户喜好和效用函数 58
3.4.2 能耗控制问题阐述 59
3.4.3 用户之间的稳态问题 60
3.4.4 VCG方法 63
3.4.5 电力级选择算法的性能评估 64
3.5 总结 65
参考文献 66
第4章 车辆到电网系统:辅助服务与通信 69
4.1 引言 69
4.2 V2G系统中的辅助服务 70
4.3 V2G系统架构 72
4.3.1 聚合场景 74
4.3.2 充电场景 74
4.4 V2G系统通信 75
4.4.1 电力线通信与家庭插电联盟 75
4.4.2 无线个人局域网和ZigBee 75
4.4.3 Z-Wave 76
4.4.4 蜂窝网络 76
4.4.5 干扰管理与认知无线电 76
4.5 面临的挑战与开放性研究问题 77
4.5.1 满足通信需求 77
4.5.2 协调充电与放电 77
4.6 总结 78
参考文献 78
第2部分 智能电网的物理层数据通信、接入、检测和估计技术
第5章 智能电网的通信和接入技术 87
5.1 引言 87
5.1.1 传统电网通信 87
5.1.2 智能电网的目标 88
5.1.3 数据分类 90
5.2 通信媒质 91
5.2.1 有线方案 92
5.2.2 无线方案 94
5.3 电力线通信标准 97
5.3.1 宽带电力线通信 98
5.3.2 窄带电力线通信 99
5.3.3 电力线通信技术共存 100
5.4 无线标准 101
5.4.1 近距离无线方案 101
5.4.2 远距离解决方案 102
5.5 网络解决方案 104
5.5.1 混合组网解决方案 105
5.5.2 公用还是专用组网 105
5.5.3 互联网和基于IP的网络 105
5.5.4 无线传感器网络 106
5.5.5 机对机通信 107
5.6 总结 109
参考文献 109
第6章 智能电网中的机对机通信 113
6.1 引言 113
6.2 机对机通信技术 115
6.2.1 有线还是无线 115
6.2.2 微型机对机通信网 116
6.2.3 蜂窝机对机通信网 118
6.3 机对机通信的应用 119
6.4 机对机通信架构标准组织 120
6.4.1 欧洲电信标准协会机对机通信标准 120
6.4.2 第三代合作伙伴计划物联网标准 122
6.5 机对机通信在智能电网中的应用 124
6.5.1 机对机通信标准架构 124
6.5.2 输配电网 125
6.5.3 用户终端应用 127
6.6 总结 129
参考文献 129
第7章 智能电网中不良数据的检测:分布式方法 133
7.1 引言 133
7.2 目前分布式状态估计与不良数据处理的发展水平 134
7.2.1 广域状态估计模型 134
7.2.2 状态估计中的不良数据处理 134
7.2.3 相关研究 135
7.3 全分布式不良数据检测 136
7.3.1 引文 136
7.3.2 分布式不良数据的推荐算法 137
7.4 案例分析 139
7.4.1 案例一 140
7.4.2 案例二 141
7.5 总结 143
致谢 144
参考文献 144
第8章 分布式状态估计:一个基于学习的框架 146
8.1 引言 146
8.2 背景 147
8.3 状态估计模型 147
8.4 基于学习的状态估计方法 148
8.4.1 地理多样性 148
8.4.2 边信息 149
8.4.3 加权平均估计 149
8.4.4 评估性能 150
8.5 总结 151
参考文献 151
第3部分 智能电网和广域网
第9章 适用于广域测量应用的网络技术 157
9.1 引言 157
9.2 广域测量系统的组成 158
9.2.1 PMU和PDC 158
9.2.2 硬件构架 159
9.2.3 软件设施 160
9.3 WAMS的通信网络 161
9.3.1 通信需求 162
9.3.2 传输媒介 162
9.3.3 通信协议 163
9.4 WAMS应用 164
9.4.1 电力系统监测 164
9.4.2 电力系统保护 166
9.4.3 电力系统控制 169
9.5 WAMS建模与网络仿真 171
9.5.1 软件介绍 171
9.5.2 系统基础设施建模 171
9.5.3 应用分类 173
9.5.4 监测仿真 173
9.5.5 保护仿真 174
9.5.6 控制仿真 175
9.5.7 混合仿真 176
9.6 总结 176
参考文献 177
第10章 无线网络在智能电网中的应用 179
10.1 引言 179
10.2 智能电网应用需求 179
10.2.1 应用类型 179
10.2.2 服务质量要求 180
10.2.3 按服务质量划分应用 180
10.2.4 流量要求 183
10.3 网络拓扑结构 186
10.3.1 通信部件 186
10.3.2 连通性 187
10.4 配置因素 189
10.4.1 频谱 189
10.4.2 路径损耗 190
10.4.3 覆盖率 190
10.4.4 容量 192
10.4.5 弹性 192
10.4.6 安全性 193
10.4.7 资源共享 193
10.5 性能度量与折中 193
10.5.1 覆盖范围 193
10.5.2 容量 195
10.5.3 可靠性 197
10.5.4 时延 198
10.6 总结 199
参考文献 200
第4部分 智能电网的传感器和执行器网络
第11章 智能电网的无线传感器网络: 研究挑战和潜在应用 203
11.1 引言 203
11.2 基于WSN的智能电网应用 204
11.2.1 客户端 204
11.2.2 输配电端 206
11.2.3 发电端 207
11.3 基于WSN的智能电网应用的研究挑战 208
11.4 总结 210
致谢 210
参考文献 210
第12章 智能电网的传感技术和网络协议 215
12.1 引言 215
12.2 传感器和传感准则 216
12.2.1 计量和电能质量传感器 216
12.2.2 电力系统状态和健康状况监测传感器 218
12.3 智能电网的通信协议 219
12.3.1 MAC协议 220
12.3.2 路由协议 222
12.3.3 传输协议 226
12.4 智能电网中设计WSN协议的挑战 227
12.5 总结 228
参考文献 228
第13章 智能电网中传感器与执行器 网络的潜在实现方法 232
13.1 引言 232
13.2 智能电网中的能量与信息流 233
13.3 智能电网中的SANET 235
13.3.1 SANET在智能电网中的应用 235
13.3.2 智能电网中SANET的组成元件 237
13.3.3 SANET在智能电网中遇到的挑战 240
13.4 提出的机制 240
13.4.1 普遍的面向服务的网络 240
13.4.2 可以感知环境的智能控制 241
13.4.3 压缩传感 242
13.4.4 设备工艺 242
13.5 智能电网中SANET的一个研究案例——家庭能源管理系统 244
13.5.1 能源管理系统 244
13.5.2 EMS的设计和实现 244
13.6 总结 245
参考文献 246
第14章 智能电网中无线传感器网络的应用及其性能评估 248
14.1 引言 248
14.2 智能电网中的约束协议栈 249
14.2.1 IEEE 802.15.4 249
14.2.2 基于IPv6的低速无线个人局域网 250
14.2.3 低功耗有损网络的路由协议 251
14.2.4 受约束的应用协议 252
14.2.5 W3C制定的高效XML交换格式 253
14.3 实现 254
14.3.1 802.15.4 254
14.3.2 6LoWPAN 254
14.3.3 RPL 256
14.3.4 CoAP 256
14.3.5 EXI 258
14.4 性能评估 258
14.4.1 采用IEEE 802.15.4协议的链路性能 259
14.4.2 基于6LoWPAN的网络吞吐量 260
14.4.3 在多跳场景下基于RPL的网络吞吐量 262
14.4.4 CoAP性能 263
14.4.5 CoAP的多跳性能 265
14.5 总结 266
参考文献 266
第5部分 智能电网通信和组网的安全问题
第15章 网络攻击对智能电网影响的分析 271
15.1 引言 271
15.2 背景 272
15.2.1 风险管理 272
15.2.2 当前的发展水平 273
15.3 网络攻击影响分析的框架 273
15.3.1 图和动力系统 273
15.3.2 基于图的动力系统模型合成 274
15.4 研究案例 275
15.4.1 13节点配电测试系统 275
15.4.2 模型合成 278
15.4.3 攻击场景一 278
15.4.4 攻击场景二 280
15.4.5 攻击场景三 282
15.5 总结 283
参考文献 284
第16章 在智能电网中干扰操控电力交易市场 287
16.1 引言 287
16.2 电力交易市场模型 288
16.3 攻击体制 290
16.3.1 攻击机制 290
16.3.2 损耗分析 291
16.4 防御对策 294
16.5 总结 296
参考文献 296
第17章 电力系统状态估计的安全性:攻击和保护方案 299
17.1 引言 299
17.2 电力系统状态估计和隐秘攻击 300
17.2.1 电网和测量模型 300
17.2.2 状态估计和不良数据检测 302
17.2.3 BDD和隐秘攻击 302
17.3 点对点SCADA网络中的隐秘攻击 303
17.3.1 最小代价隐秘攻击:问题公式化 303
17.3.2 最小代价隐秘攻击的精确计算 304
17.3.3 最小代价的上界 305
17.3.4 数值结果 307
17.4 点对点SCADA网络中对攻击的防护 308
17.4.1 完美保护 308
17.4.2 不完美的保护 309
17.4.3 数值结果 309
17.5 对SCADA网络路由的隐秘攻击 310
17.5.1 测量攻击代价 311
17.5.2 变电站攻击的影响 312
17.5.3 数值结果 313
17.6 对SCADA网络路由上隐秘攻击的防护 313
17.6.1 单路径和多路径路由 314
17.6.2 数据认证和保护 316
17.7 总结 316
参考文献 317
第18章 智能电网中的分层安全架构 319
18.1 引言 319
18.2 分层架构 320
18.2.1 物理层 322
18.2.2 控制层 323
18.2.3 通信层 323
18.2.4 网络层 323
18.2.5 监督层 323
18.2.6 管理层 323
18.3 鲁棒弹性控制 324
18.4 安全的网络路由 327
18.4.1 分层路由 328
18.4.2 集中式与分布式的架构 329
18.5 信息安全管理 330
18.5.1 漏洞管理 330
18.5.2 用户打补丁 331
18.6 总结 333
参考文献 334
第19章 应用驱动的安全智能电网设计 338
19.1 引言 338
19.2 对先进仪表设施的入侵检测 340
19.2.1 智能电表和安全问题 340
19.2.2 环境感知和监控方案的架构 341
19.2.3 基于规范的IDS强制执行策略 342
19.3 SCADA系统的融合网络 344
19.3.1 对网络融合的需求和挑战 344
19.3.2 具有时效性限制的架构 345
19.4 鉴权的设计原则 347
19.4.1 为智能电网设计安全鉴权协议的要求和挑战 347
19.4.2 认证协议的设计准则 348
19.4.3 使用案例:DNP3的安全认证补充 349
19.5 总结 350
致谢 351
参考文献 351
第6部分 现场测试和配置
第20章 案例研究和最新智能电网 现场试验得到的经验教训 357
20.1 引言 357
20.2 智能电网 357
20.2.1 济州岛智能电网试验项目 357
20.2.2 Hydro one的高级分布式系统项目 358
20.2.3 智能家庭项目 361
20.3 智能电力系统 361
20.4 智能用户 362
20.4.1 PEPCO 363
20.4.2 联邦爱迪生 363
20.4.3 康涅狄格光电 364
20.4.4 加利福尼亚州定价试点 365
20.5 经验教训 365
20.6 总结 365
参考文献 366
我国已经建立了系统的特高压与智能电网技术标准体系,编制相关国际标准19项,特高压交流电压已成为国际标准电压。
国际电工委员会主席克劳斯·武赫雷尔表示,中国的特高压输电技术在世界上处于领先水平,这种能够减少长距离输电损耗的技术,在世界其他地区也将有广泛的应用前景。
智能电网新型配电技术的应用
未来的配电技术必须具有如下特点:网络快速自愈、抗扰动能力强、提供优质电力、与用户互动等。这些智能电网配电技术都会促进云计算数据机房的供电系统更加安全可靠。
1、同步开断技术
云计算数据中心机房中,由于电力需求量大,常涉及到高压供电。高压开关大都是机械开关,开断时间长、分散性大。这种慢过程的机械开断容易引起操作过电压,加速设备老化或者直接损害设备。同步开断,又称智能开关,是在电压或电流的指定相位完成电路的断开或闭合。采用电子开关取代机械开关,在理论上应用同步开断技术可完全避免电力系统的操作过电压。这样,由操作过电压决定的电力设备绝缘水平可大幅度降低,由于操作引起设备(包括断路器本身)的损坏也可大大减少。
2、故障电流限制技术
由于云计算数据中心的规模,数据中心的用电电流是很大的,短路电流也呈日益增大的趋势,如果不采取有效的抑制短路电流的措施,一旦发生短路故障,开关及用户设备将是无法承受的。随着电力电子技术、超导技术等的发展,限制短路电流已成为可能,这就依赖于故障电流限制器(FaultCurrentLimiter,FCL)的研制和开发。国外对超导FCL和电力电子FLC研究较多,这可以在云计算数据中心中借鉴和应用。
3、主动配电网技术
未来“主动配电网”可能采取类似英特网的形式,即分布式决策和双向潮流。在遍布全系统的所有节点上都将有控制设备。主动配电网的功能是将电源和用户需求有效连接起来,允许双方共同决定如何最好地实时运行。要达到这一要求,控制水平要远高于配电网的水平。这包括潮流评估、有竞争力的电压控制和保护技术,以及比配电网拥有更多的传感器和自动装置的新型通信控制系统等,实现云计算数据中心供电系统的主动预警,负载均衡和三相平衡等。
4、储能技术
储能技术已被视为电网运行过程中的重要组成部分。系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平滑负荷,不仅可以更有效地利用电力设备,降低供电成本,也可作为提高系统运行稳定性、调整频率、补偿负荷波动的一种手段。
储能技术可用于云计算数据中心的应急供电状况,以及充分利用当地的峰谷电价差。现有的电能存储方式主要可分为机械储能、化学储能、电磁储能和相变储能等。超导储能由于超导体电流大,能量密度高,存取快速,可作为理想的电磁能储藏器,超导材料临界温度低一直是超导储能应用的限制因素,直接冷却超导储能(HTc-SMES)的研究受到了美日等国的高度重视,但绝大部分超导储能装置为低温超导储能系统。
智能电网新型用电技术的应用
在智能电网的框架下,需要新型用电技术提高电力需求弹性,提升电力需求侧管理的智能化水平,帮助电力用户与智能电网进行互动,实现云计算数据中心更加方便、高效、经济、环保的管理用电。
1、先进传感器技术
未来的数据中心传感器将更加智能化,功能将逐步融合。风、火、水、电、气、温度、湿度、烟雾、二氧化碳等都是传感器的采集对象。传感器不仅可以分析和提取数据中心环境的特征数据,而且可以和特定的数据管理分析系统进行信息交互,可以对数据中心的日常数据、整体效能和环境指数提供整体分析和科学评估。
2、先进用电监控技术
用电监控技术分为两个层面:用电监测技术和用电控制技术。新型用电监测技术对用户的电力消费信息进行动态的准实时监测,帮助用户了解自身的详细用电信息,以指导用户优化系统的用电行为。新型用电控制技术在信息获取的基础上,结合用户的用电需要,对整个数据中心用电系统进行自动控制,实现电能更合理的分配。
智能电网环境中的物联网技术应用
目前,物联网在智能电网中的每个环节都有应用,协助实现了对电网的智能控制和优化配置,提高电力规划的管理能力。
第一:发电环节。对常规能源发电的机组的运行情况、设备之间的互动以及各种参数指标实行实时监控,对风力、太阳能发电进行电机组的稳态特性和动态特性进行稳定性分析预测,实现发电环节的自动、稳定和高效。
第二:输送环节。运用物联网在每个节点上的监控能力,对整个输送线路上的导线温度、线路电容、绝缘子污秽以及线路风振进行全程监测,并作出评估和诊断。由于智能电网具有自愈的特性,对发现破坏或者不正常的情况进行自我治愈,对用户实现连续供电。
第三:变电环节。将物联网应用到智能电网后,可以通过物联网中的传感器对重要变电设备进行检测,并将数据传送到管理终端,实现对整个变电站的实时检修,对周围的安全进行防护,更好地提高变电环节的可靠性和智能化水平。
第四:配电环节。由于我国国土广阔,所以配电规模和配电设备数量都十分巨大。物联网可靠传递特性恰好可以针对这一情况实现配电网络中的配电现场作业、配电网络设备以及运行状态信息的有效传递并进行安全防护,避免大规模人力、物力的投入。
第五:用电环节。物联网技术与门禁系统、防盗防火系统以及有情境控制的结合,实现了电网与用户的双向互动。革新电力服务的传统模式为用户提供更加优质、便捷的服务,提高了人民生活质量。2100433B
智能电网包括发电、输电、变电、配电和用电等环节。智能电网用户端从用电者的角度来考虑和研究如何顺应智能电网发展趋势,通过技术、管理、政策等手段,实现智能、便捷、节能、安全、舒适、环保等理念。