选择特殊符号
选择搜索类型
请输入搜索
本书较全面地叙述了智能控制的基本理论、方法和应用。全书共分17章,主要内容为模糊控制的基本原理和应用、神经网络控制的基本原理和应用、智能优化算法及其应用。
本书系统性强,突出理论联系实际,叙述深入浅出,适合于初学者学习。书中给出了一些智能算法的仿真实例和MATLAB仿真程序,并配有一定数量的习题和上机操作题,可作为高等院校工业自动化、计算机应用、电子工程等专业的高年级本科生和硕士研究生的教材,也适合从事工业自动化领域的工程技术人员阅读和参考。
第1章绪论
1.1智能控制的发展过程
1.1.1智能控制的提出
1.1.2智能控制的概念
1.1.3智能控制的发展
1.1.4智能控制的技术基础
1.2智能控制的几个重要分支
1.2.1模糊控制
1.2.2神经网络控制
1.2.3智能搜索算法
1.3智能控制的特点、工具及应用
1.3.1智能控制的特点
1.3.2智能控制的研究工具
1.3.3智能控制的应用
思考题
参考文献
第2章模糊控制的理论基础
2.1概述
2.2模糊集合
2.2.1模糊集合
2.2.2模糊集合的运算
2.3隶属函数
2.3.1隶属函数的特点
2.3.2几种典型的隶属函数及其MATLAB表示
2.3.3模糊系统的设计
2.3.4隶属函数的确定方法
2.4模糊关系及其运算
2.4.1模糊关系矩阵
2.4.2模糊矩阵运算
2.4.3模糊矩阵的合成
2.5模糊推理
2.5.1模糊语句
2.5.2模糊推理
思考题
第3章模糊逻辑控制
3.1模糊控制的基本原理
3.1.1模糊控制原理
3.1.2模糊控制器的组成
3.1.3模糊控制系统的工作原理
3.1.4模糊控制器结构
3.2模糊控制系统分类
3.3模糊控制器的设计
3.3.1模糊控制器的设计步骤
3.3.2模糊控制器的MATLAB仿真
3.4模糊控制应用实例——洗衣机的模糊控制
3.5模糊自适应整定PID控制
3.5.1模糊自适应整定PID控制原理
3.5.2仿真实例
3.6大时变扰动下切换增益模糊调节的滑模控制
3.6.1系统描述
3.6.2滑模控制器设计
3.6.3模糊规则设计
3.6.4仿真实例
思考题
第4章自适应模糊控制
4.1模糊逼近
4.1.1模糊系统的设计
4.1.2模糊系统的逼近精度
4.1.3仿真实例
4.2间接自适应模糊控制
4.2.1问题描述
4.2.2自适应模糊滑模控制器设计
4.2.3仿真实例
4.3直接自适应模糊控制
4.3.1问题描述
4.3.2模糊控制器的设计
4.3.3自适应律的设计
4.3.4仿真实例
思考题
第5章基于TS模糊建模的控制
5.1TS模糊模型
5.1.1TS模糊模型的形式
5.1.2仿真实例
5.1.3一类非线性系统的TS模糊建模
5.2TS型模糊控制器的设计
5.3倒立摆系统的TS模糊模型
5.4基于线性矩阵不等式的单级倒立摆TS模糊控制
5.4.1LMI不等式的设计及分析
5.4.2不等式的转换
5.4.3LMI设计实例
5.4.4基于LMI的倒立摆TS模糊控制
5.5基于极点配置的单级倒立摆TS模糊控制
附加资料: 新的LMI求解工具箱——YALMIP工具箱
思考题
参考文献
第6章机械手自适应模糊控制
6.1简单的自适应模糊滑模控制
6.1.1问题描述
6.1.2模糊逼近原理
6.1.3控制算法设计与分析
6.1.4仿真实例
6.2基于模糊补偿的机械手模糊自适应滑模控制
6.2.1系统描述
6.2.2基于传统模糊补偿的控制
6.2.3自适应控制律的设计
6.2.4基于摩擦模糊逼近的模糊补偿控制
6.2.5仿真实例
6.3模糊系统逼近的最小参数学习法
6.3.1问题描述
6.3.2模糊系统最小参数逼近
6.3.3基于模糊系统逼近的最小参数自适应控制
6.3.4仿真实例
6.4基于模糊补偿的机械手单参数自适应控制
6.4.1系统描述
6.4.2基于模糊系统逼近的最小参数自适应控制
6.4.3仿真实例
附加资料
思考题
参考文献
第7章神经网络理论基础
7.1神经网络发展简史
7.2神经网络原理
7.3神经网络的分类
7.4神经网络学习算法
7.4.1Hebb学习规则
7.4.2Delta(δ)学习规则
7.5神经网络的特征及要素
7.5.1神经网络特征
7.5.2神经网络三要素
7.6神经网络控制的研究领域
思考题
第8章典型神经网络
8.1单神经元网络
8.2BP神经网络
8.3RBF神经网络
8.3.1网络结构
8.3.2控制系统设计中RBF网络的逼近
8.4Hopfield神经网络
思考题
参考文献
第9章自适应RBF神经网络控制
9.1一阶系统神经网络自适应控制
9.1.1系统描述
9.1.2滑模控制器设计
9.1.3仿真实例
9.1.4一阶系统自适应RBF控制
9.1.5仿真实例
9.2二阶系统自适应RBF神经网络控制
9.2.1系统描述
9.2.2基于RBF网络逼近f(x)的滑模控制
9.2.3仿真实例
9.3基于RBF网络的单参数直接鲁棒自适应控制
9.3.1系统描述
9.3.2控制律和自适应律设计
9.3.3仿真实例
思考题
参考文献
第10章基于RBF网络的输入输出受限控制
10.1控制系统位置输出受限控制
10.1.1输出受限引理
10.1.2系统描述
10.1.3控制器的设计
10.1.4仿真实例
10.2基于RBF网络的状态输出受限控制
10.2.1系统描述
10.2.2RBF网络原理
10.2.3控制器的设计
10.2.4仿真实例
10.3基于双曲正切的输入受限控制
10.3.1双曲函数及性质
10.3.2定理及分析
10.3.3基于双曲正切的输入受限控制
10.3.4仿真实例
10.4基于RBF网络逼近的输入受限控制
10.4.1系统描述
10.4.2RBF神经网络逼近
10.4.3控制器的设计及分析
10.4.4仿真实例
思考题
参考文献
第11章基于RBF神经网络的执行器自适应容错控制
11.1执行器容错控制描述
11.2SISO系统执行器自适应容错控制
11.2.1控制问题描述
11.2.2控制律的设计与分析
11.2.3仿真实例
11.3基于RBF网络的SISO系统执行器自适应容错控制
11.3.1控制问题描述
11.3.2RBF神经网络设计
11.3.3控制律的设计与分析
11.3.4仿真实例
11.4MISO系统执行器自适应容错控制
11.4.1控制问题描述
11.4.2控制律的设计与分析
11.4.3仿真实例
11.5MISO系统执行器自适应神经网络容错控制
11.5.1控制问题描述
11.5.2RBF神经网络设计
11.5.3控制律的设计与分析
11.5.4仿真实例
11.6带执行器卡死的MISO系统自适应容错控制
11.6.1控制问题描述
11.6.2控制律的设计与分析
11.6.3仿真实例
11.7带执行器卡死的MISO系统神经网络自适应容错控制
11.7.1控制问题描述
11.7.2RBF神经网络设计
11.7.3控制律的设计与分析
11.7.4仿真实例
附加资料
思考题
参考文献
第12章机械系统神经网络自适应控制
12.1一种简单的RBF网络自适应滑模控制
12.1.1问题描述
12.1.2RBF网络原理
12.1.3控制算法设计与分析
12.1.4仿真实例
12.2基于RBF网络逼近的机械手自适应控制
12.2.1问题的提出
12.2.2基于RBF神经网络逼近的控制器
12.2.3仿真实例
12.3基于RBF网络的最小参数自适应控制
12.3.1问题描述
12.3.2基于RBF网络逼近的最小参数自适应控制
12.3.3仿真实例
12.4机械手神经网络单参数自适应控制
12.4.1问题的提出
12.4.2神经网络设计
12.4.3控制器设计
12.4.4仿真实例
12.5一类欠驱动机械系统神经网络滑模控制
12.5.1系统描述
12.5.2RBF网络原理
12.5.3滑模控制律的设计
12.5.4收敛性分析
12.5.5仿真实例
附加资料
思考题
参考文献
第13章基于RBF网络的反演自适应控制
13.1一种三阶非线性系统的反演控制
13.1.1系统描述
13.1.2反演控制器设计
13.1.3仿真实例
13.2基于RBF网络的三阶非线性系统反演控制
13.2.1系统描述
13.2.2RBF网络原理
13.2.3神经网络反演控制器设计
13.2.4仿真实例
思考题
参考文献
第14章基于LMI的神经网络自适应控制
14.1基于LMI的控制
14.1.1系统描述
14.1.2控制器的设计与分析
14.1.3仿真实例
14.2基于LMI的神经网络自适应控制
14.2.1系统描述
14.2.2RBF神经网络设计
14.2.3控制器的设计与分析
14.2.4仿真实例
14.3基于LMI的神经网络自适应跟踪控制
14.3.1系统描述
14.3.2仿真实例
思考题
第15章智能优化算法
15.1遗传算法及其应用
15.1.1遗传算法的基本原理
15.1.2遗传算法的特点
15.1.3遗传算法的应用领域
15.1.4遗传算法的优化设计
15.1.5基于遗传算法的函数优化
15.2基于遗传算法的TSP优化
15.2.1TSP的编码
15.2.2TSP的遗传算法设计
15.2.3仿真实例
15.3粒子群优化算法
15.3.1粒子群算法基本原理
15.3.2算法流程
15.3.3基于粒子群算法的函数优化
15.4标准差分进化算法
15.4.1差分进化算法的基本流程
15.4.2差分进化算法的参数设置
15.4.3基于差分进化算法的函数优化
15.5基于差分进化最优轨迹规划的PD控制
15.5.1问题的提出
15.5.2一个简单的样条插值实例
15.5.3最优轨迹的设计
15.5.4最优轨迹的优化
15.5.5仿真实例
15.6基于Hopfield网络的路径优化
15.6.1TSP问题
15.6.2求解TSP问题的Hopfield神经网络设计
15.6.3仿真实例
思考题
参考文献
第16章智能优化算法在参数辨识中的应用
16.1柔性机械手动力学模型参数辨识
16.1.1柔性机械手模型描述
16.1.2仿真实例
16.2飞行器纵向模型参数辨识
16.2.1问题描述
16.2.2仿真实例
16.3VTOL飞行器参数辨识
16.3.1VTOL飞行器参数辨识问题
16.3.2基于粒子群算法的参数辨识
16.3.3基于差分进化算法的VTOL飞行器参数辨识
16.4四旋翼飞行器建模与参数辨识
16.4.1四旋翼飞行器动力学模型
16.4.2动力学模型的变换
16.4.3参数的辨识
16.4.4基于粒子群算法参数辨识
16.4.5基于差分进化算法参数辨识
思考题
参考文献
第17章神经网络自适应协调控制
17.1主辅电机协调鲁棒控制
17.1.1系统描述
17.1.2控制律设计与分析
17.1.3仿真实例
17.2基于神经网络的主辅电机协调控制
17.2.1系统描述
17.2.2RBF网络的设计
17.2.3控制律设计与分析
17.2.4仿真实例
思考题
参考文献2100433B
教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计的理论基础包括: 1、一...
《大设计》无所不在。在会议室和战场上;在工厂车间中也在超市货架上;在自家的汽车和厨房中;在广告牌和食品包装上;甚至还出现在电影道具和电脑图标中。然而,设计却并非只是我们日常生活环境中的一种常见现象,它...
本书分为上篇“平面构成”和下篇“色彩构成”两个部分,每一部分的最后章节选编了一些本校历年来学生的优秀作品作为参考,图文并茂、深入浅出。此外,本书最后部分附有构成运用范例及题型练习,可供自考学生参考。本...
智能控制理论基础实验报告
1 北京科技大学 智能控制理论基础实验报告 学 院 专业班级 姓 名 学 号 指导教师 成 绩 2014 年 4 月 17日 2 实验一 采用 SIMULINK 的系统仿真 一、实验目的及要求: 1.熟悉 SIMULINK 工作环境及特点 2.掌握线性系统仿真常用基本模块的用法 3.掌握 SIMULINK 的建模与仿真方法 二、实验内容: 1. 了解 SIMULINK 模块库中各子模块基本功能 微分 积分 积分步长延时 状态空间模型 传递函数模型 传输延迟 可变传输延迟 零极点模型 3 直接查询表 函数功能块 MATLAB 函数 S函数(系统函数) 绝对值 点乘 增益 逻辑运算 符号函数 相加点 死区特性 手动开关 继电器特性 饱和特性 开关模块 信号分离模块 信号复合模块 输出端口 示波器模块 输出仿真数据到文件 输出仿真数据到工作空间 4 通过实验熟悉以上模块的使用。 2.
气体调压阀智能控制系统的设计与应用
随着工业现代化的不断进步和发展,对天然气等气体的安全输送要求也越来越高,气体调压阀智能控制系统的设计就是为了有效提高管道气体运输中的安全和可靠性。提出了一种基于P83C552单片机为基础的气体调压阀智能控制系统,阐述了气体调压阀智能控制系统的组成特点及功能,并分析了该系统的主要硬件构成、电路及LED显示设计。
《智能控制算法及其应用》主要介绍各种典型智能控制算法的基本内容、设计与实现方法及其在函数优化、电力系统中的应用。《智能控制算法及其应用》首先阐述智能、智能控制的基本概念,介绍智能控制与传统的经典控制理论、现代控制理论的联系和区别。然后从四种典型智能控制算法(专家系统、模糊控制、神经网络和进化计算)入手分别阐述它们的发展历史、基本内容、实现方法及其应用。最后介绍混沌模拟退火动态烟花优化算法,并将其用于优化离散时间微分平坦自抗扰控制律的参数,通过计算机仿真和基于智能优化算法试验平台开展试验以验证该算法的有效性;介绍递减步长果蝇优化算法,并将其应用于风电机组齿轮箱的故障诊断;介绍云粒子群布谷鸟融合算法,通过联合循环发电机组典型热工过程模型参数辨识实例验证该算法的有效性。
当控制系统不稳定,或者当锅炉出现较大程度的内部扰动(例如煤发热量扰动)时,上节所述之规则就反映了锅炉一汽机能量的一种严重不平衡情况。在这种运行条件下,及时地将锅炉输入能量切回到安全的工作点,是保证系统稳定的必要措施。
在稳定工况下,前馈作用FF1等于0。当规则2成立时,即锅炉输入能量超过汽机需求模式成立,则锅炉侧前馈
当控制系统己经安全返回,即规则2不再成立时,则FF1等于0。
前馈作用因此消失。
同理,当规则成立时,则F为一个可整定的正数,整定主要根据机组容许的限制来确定。
假设主蒸汽压力偏差定义为
而负荷偏差定义为
通常,在协调控制系统中应用多变量模糊控制策略,需要构造模糊子集,从而构成复杂地推理规则库.根据上节所建立的性能评价模式平面,我们无需考虑模糊子集,而只将约束条件。因此,模糊控制系统被转换成在各象限中的控制方法。2100433B
本书系统地介绍智能控制的基本内容,全书共6章,主要包括智能控制概述、模糊逻辑理论基础、模糊控制、神经网络原理、神经网络控制、遗传算法、粒子群算法、量子进化算法,以及智能控制的Matlab仿真程序设计,并给出了智能控制的应用实例。