选择特殊符号
选择搜索类型
请输入搜索
《建筑学名词》第二版。
设计视点至中轴剖面最远观众席排距分格线高出建筑地面1.1m处点的连线直线距离。传统上“最远视距”一般指“设计视点至最后排观众席(以椅背线为准)的水平距离”,其一般作为观演舒适的一个参考性控制指标,世界上一些大型剧场是超出了这个距离。
led显示屏最佳视距 是2。3米你的和3.0米 看你的大小的大的距离要更远的
顺风对讲机挺不错的,真的很实用,通话效果还不错,声音清晰,音质很好,没有噪音,大小合适,携代方便,信号特强,做工精细,手感特舒服,非常满意。做工细腻,手感也棒棒哒,经测试,郊区3公里没问题,市区建筑物...
一般单个的对讲机最远的距离只有十公里!不过现在市面上已经出现了对讲机中继台,这样就可以把距离扩大到二十公里!
基于TOA减小非视距误差的方案设计
针对TOA无线定位中容易受非视距影响等问题,提出了一套有效减小非视距误差的无线测距系统.通过建立消除非视距误差的卡尔曼滤波模型来消除随机干扰,利用实测数据进行离线滤波仿真,从而验证模型的有效性.以ATmega1280微处理器为控制器,nanoPAN 5375为射频芯片,设计了一套测距系统,并在测距平台上进行实际测试.结果表明,测距系统能够完成实时动态滤波,有效减少非视距误差,测量精度较高,可直接应用于存在NLOS环境下的定位.
用经纬仪和水准仪来测量距离时,为得到测量结果,必须对物体标尺读数(对应于分划板上两视距线间距)乘上的一个常数。被测距离与物体标尺读数的关系可用下式表示
式中:D--被测物体至望远镜转轴的距离;L--对应于分划板上两视距线的物体标尺数值;K--视距乘常数;C--视距加常数
如图(1)所示,欲测定A,B两点间的水平距离D及高差h,可在A点安置经纬仪,B点立视距尺,设望远镜视线水平,瞄准B点视距尺,此时视线与视距尺垂直。若尺上M,N点成像在十字丝分划板上的两根视距丝m,n处,那末尺上MN的长度可由上,下视距丝读数之差求得。上,下丝读数之差称为视距间隔或尺间隔。
图(1)中l为视距间隔,p为上、下视距丝的间距,f为物镜焦距,δ为物镜至仪器中心的距离。
由相似三角形m'n'F与MNF可得:d:f=l:p ,即:d=fl /p,由图看出D=d+f+δ ,带入得:D=fl/p+f+δ,令f/p=K,f+δ=C,得D=Kl+C.(1)
式中K、C--视距乘常数和视距加常数。现代常用的内对光望远镜的视距常数,设计时已使K=100,C接近于零.则公式(1)可化简为D=Kl=100×l。(2)
而高差h=i-v, (3)
i-仪器高,是桩顶到仪器横轴中心的高度;v-瞄准高,是十字丝中丝在尺上的读数。
在地面起伏较大的地区进行视距测量时,必须使视线倾斜才能读取视距间隔,如图(3)。由于视线不垂直于视距尺,故不能直接应用上述公式。如果能将视距间隔MN换算为与视线垂直的视距间隔M'N',这样就可按公式(2)计算视距,也就是图(3)斜距D',再根据D'和竖直角α算出水平距离D及高差h。因此解决这个问题的关键在于求出MN与与M'N'之间的关系。
图中φ角很小,约为34',故可把角MM'E和角NN'E 近似地视为直角,容易计算得l'=M'N'=MNcosα=lcosα,则D'=Klcosα。(4)
容易求得水平距离D=Klcosα*cosα,(5)
高差h=D*tanα+i-v 。 (6)
其实视线水平的时候α为0°,sin0°=0,cos0°=1,带入(4)、(5)、(6)就可得到(2)、(3)式。其中视线水平的时候视距等于水平距离。
导线的边长和高程用视距法来测定,称为视距导线测量。它不受地形起伏的影响,适用于山区作图根测量。
视距尺最好用等差级数视距尺,用这种视距尺测量精度较高,用普通视距尺精度稍差一些。作业时应严格遵守前面有关视距测量注意事项。
视距导线测量工序和经纬仪导线测量一样,只是边长和高差是用视距法测定。视距导线测量外业分为:踏查选点、测角、视距,而测角和视距在一个测站是同时进行的。视距导线的踏查选点、测角方法与要求和经纬仪导线测量一样。下面着重介绍在一个测站用普通视距尺作视测量的方法和限差规定。在每一个测站观测水平角后,紧接着用视距法测定边长和高差,每一边都要作往测和返测各一次,在1站安置仪器,量仪器高,先观测1—2边,盘左用望远镜中丝对准2点所立标尺上的仪器高读数,读取上丝和下丝读数,调子竖盘指标水准管,读取竖角读数。然后盘右以望远镜中丝对准标尺仪器高读数。读取上丝和下丝读数,调平竖盘指标水准管读竖角读数,如此完成1—2边的往测观测。当中丝对准仪器高受地形限制有困难时,可以对任意一个读数。2100433B