造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

巨磁电阻材料发展

2018/06/19204 作者:佚名
导读: 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。直接交

人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。直接交换作用的特征长度为0.1-0.3nm,间接交换作用可以长达1nm以上。1nm已经是实验室中人工微结构材料可以实现的尺度,所以1970年之后,科学家就探索人工微结构中的磁性交换作用。

1988年法国的M.N.Baibich等人在美国物理学会主办的Physical Review Letters 上发表了有关Fe/Cr巨磁电阻效应的著名论文,首次报告了采用分子外延生长工艺(MBE)制成Fe(100)/Cr(100)规则型点阵多层膜结构。在这种(Fe/Cr)n结构中,Fe为强铁磁性金属,Cr为反铁磁性金属,n为Fe和Cr的总层数。它是采用MBE工艺将Fe(100)/Cr(100)生长在GaAs芯片上,其工艺条件是,保持MBE室内剩余压力为6.7×10-9Pa,芯片温度20℃,淀积速率:对于Fe为0.06nm/s;对于Cr为0.1nm/s。它们每层的厚度约(0.9~9)nm,通常为30层。为获得上述淀积速率,还专门设计了坩埚蒸发器。经实验发现,当Cr的厚度小于(0.9~3)nm 时,它与Fe层之间偶合的一个反向铁磁特性(AF)的磁滞回线斜率逐渐增大。图1 显示了Fe层为3nm,Cr层分别为0.9nm、1.2nm 和1.8nm,磁感应强度B在±2T 范围内,热力学温度T=4.2K,n=30、35、60 时,3个不同样本的特性。随着Cr 厚度的增加和总层数的降低,Δr/r也升高,而且高斯磁场强度B越弱,Δr/r 越高,当B≈2T时,[Fe(3nm)/Cr(0.9nm)]60 膜的Δr/r可达50%以上。实验还发现,即使温度升至室温,B降低了30%Δr/r 也可达到低温值的一半,这一结论具有十分大的实用价值。

就在此前3个月,德国尤利希科研中心的物理学家彼得·格伦贝格尔( Peter Grunberg )领导的研究小组采用分子束外延(MBE)方法制备了铁-铬-铁三层单晶结构薄膜。在薄膜的两层纳米级铁层之间夹有厚度为0.8nm的铬层,实验中逐步减小薄膜上的外磁场,直到取消外磁场,发现膜两边的两个铁磁层磁矩从彼此平行(较强磁场下)转变为反平行(弱磁场下)。换言之,对于非铁磁层铬的某个特定厚度,没有外磁场时,两边铁磁层磁矩是反平行的,这个新现象成为巨磁电阻效应出现的前提。格伦贝格尔接下来发现,两个磁矩反平行时对应高电阻状态,平行时对应低电阻状态,两个电阻的差别高达10%。

1990年IBM公司的斯图尔特·帕金(S. P. Parkin )首次报道了除铁-铬超晶格,还有钴-钌和钴-铬超晶格也具有巨磁电阻效应。并且随着非磁层厚度增加,上述超晶格的磁电阻值振荡下降。在随后的几年,帕金和世界范围的科学家在过渡金属超晶格和金属多层膜中,找到了20种左右具有巨磁电阻振荡现象的不同体系,为GMR材料开辟了广阔的空间,同时帕金采用较普通的磁控溅射技术代替了精密的MBE方法制备薄膜,目前这已经成为工业生产多层膜的标准。

1992年A.E.Berkowitz和Chien等人首次发现了Fe、Co 与Cu、Ag 分别形成二元合金颗粒膜中的磁电阻效应,在低温下其Δr/r可达(40~60)%。随后陆续出现了Fe-Ag、Fe-Cu、CoxAg1-x/Ag 等颗粒多层膜。

1993年人们在钙钛矿型稀土锰氧化物中发现了比GMR 更大的磁电阻效应,即Colossal Magneto Resistance(CMR)庞磁电阻效应,开拓了GMR 研究的新领域。

在发现低磁场GMR 效应之后,1994年C.Tsang等研制出全集成化的GMR 器件――自旋阀。同年,美国的IBM公司研制出利用自旋阀原理的数据读出磁头,它将磁盘记录密度提高了17倍,达5Gbit/6.45cm2(in2)。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读