1.将去离子水和34kg链转移剂异丙醇依次加入反应釜中,加热至80~82℃。滴加14kg过硫酸铵和170kg单体丙烯酸的水溶液(去离子水)。滴毕后,反应3h。冷至40℃,加入30%的NaOH水溶液,中和至pH值为8.0~9.0蒸出异丙醇和水得液体产品。喷雾干燥得固体产品丙烯酸或丙烯酸酯与氢氧化钠反应得丙烯酸钠单体,除去副生的醇类,经浓缩、调节pH值,以过硫酸铵为催化剂聚合而得由丙烯酸和氢氧化钠反应制得丙烯酸钠单体,再在过硫酸铵催化下,聚合成聚丙烯酸钠将相对分子质量1 000~3 000的聚丙烯酸钠加入反应釜中,配成30%的水溶液即可
2.丙烯酸或丙烯酸酯与氢氧化钠反应得丙烯酸钠单体,除去副产的醇类,经浓缩、调节PH值,以过硫酸铵为催化剂聚合制得。
3.聚合法 在装有搅拌器、回流冷凝管、温度计、滴液漏斗的500mL四口烧瓶中,加入一定量的去离子水,再加入链转移剂亚硫酸氢钠(用量占体系质量的4.5%),搅拌溶解,加热升温至65℃,开始滴加单体丙烯酸及引发剂过硫酸铵水溶液。其中单体丙烯酸的质量分数占体系的30%,过硫酸铵的质量分数占体系的0.06%,滴加时间为3h,滴完后保温3h,用质量分数为30%氢氧化钠水溶液中和至pH值为7~7.5,得到无色的黏稠、低分子质量聚丙烯酸钠溶液。
4.乳液聚合法 单体溶液由丙烯酸经氢氧化钠溶液中和,再加入少量丙烯酰胺制得。在250mL反应瓶中,加入单体溶液、十二烷基磺酸钠,搅拌其混合均匀,同时通氮除氧20min,加入还原剂、乳化剂、溶剂和氧化剂。将体系升温至45℃,4h后结束聚合。升温达到一定的出水量后,停止反应。最后将反应液过滤烘干,得到粉末状产物(PAA-Na)。
低分子量聚丙烯酸钠是一种水溶性高分子电解质,应用广泛。随着应用领域的不断增多,低分子量聚丙烯酸钠已引起科学界和工业界的广泛关注。但是传统的合成方法制造成本高,因此,加强对低分子量聚丙烯酸钠的合成方法及低成本制造技术的研究具有十分重要的意义。 采用动态水溶液聚合法制备低分子量聚丙烯酸钠,并探讨了链转移剂的类型和用量、引发剂用量、聚合温度、单体浓度等因素对产物粘均分子量的影响。
研究结果发现:当单体占水溶液质量的50%、引发剂用量为单体质量的4%、链转移剂用量为单体质量的200~300%、聚合温度为80~90℃、反应时间为6h时,可合成出一系列分子量由600至7000的聚丙烯酸钠。 本论文还探索了一种合成低分子量聚丙烯酸钠的新方法——静态水溶液聚合法。通过研究丙烯酸钠聚合过程中的放热特性,发现采用静态水溶液聚合法时,选择适当的分子量调节剂、单体浓度、引发剂和聚合温度,可以有效防止爆聚现象的发生,能制备出分子量分布较窄、水溶性好、单体转化率高的低分子量聚丙烯酸钠,且制造成本明显低于动态水溶液聚合法。本研究中还找出了合成低分子量聚丙烯酸钠的最优工艺条件:单体占水溶液质量的30%、分子量调节剂用量为单体质量的4%、引发剂用量为单体质量的4%、聚合温度为60℃、反应时间为3h。
高分子量聚丙烯酸钠是一种重要的阴离子型絮凝剂,在工业上有着广泛的应用。反相悬浮聚合是将水溶性单体分散在油溶性介质中,水溶性引发剂溶解于水相中进行聚合的方法。它可以克服水溶液聚合中体系粘度大、搅拌困难以及聚合热难以散发等工艺难点,是目前合成水溶性高分子量、颗粒或粉状聚丙烯酸钠的一种新方法。 本文研究了反相悬浮法合成高分子量聚丙烯酸钠过程中的工艺稳定性及成粒机理,过硫酸盐/脂肪胺引发体系引发丙烯酸钠水溶液聚合动力学及其对聚合物分子量的影响,并就合成高分子量聚丙烯酸钠进行了研究。最后,选用合适的反应条件和工艺流程,合成了粒径在50~200μm,分子量为5~*10~6的透明粒状聚合物。
研究发现过硫酸铵/DMA(质量百分含量)=0.8%/0.5%,60℃时,得到的聚丙烯酸钠分子量最高,达2.80~*10~6。体系中添加无机盐,通过影响自由基周围的静电场和离子强度来影响聚合反应速率。NaCl和CH_3COONa均可适当地提高聚丙烯酸钠的分子量。提出了用循环伏安法测定脂肪胺氧化电位,来推测过硫酸铵/脂肪胺引发活性的方法,测得结果与聚合体系的表观活化能的顺序相同。 合成高分子量聚丙烯酸钠时,存在高分子量和凝胶含量的矛盾。在提高分子量的同时采用链转移剂控制聚合物中凝胶含量。当过硫酸铵量为0.2%(wt%,相对于水相)、NaCl量为0.17%(同上),聚合得到聚丙烯酸钠分子量为1.417~*10′。