造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

离子发动机应用实例

2018/06/19168 作者:佚名
导读: 深空1号探测器 提到离子发动机,就不能不提美国的深空1号探测器。虽然离子发动机过去在卫星上经常使用,但都是作为辅助发动机,用于姿态调整或者轨道维持;而深空1号第一次将离子发动机作为主发动机使用。深空1号的离子发动机也是迄今为止将电能向推力转化效率最高的,在太空中运行寿命最长的,也是比冲量最高的,比冲量超过3,000秒。这种离子发动机追根溯源可以推到上个世纪的60年代,但到现在仍可以

深空1号探测器

提到离子发动机,就不能不提美国的深空1号探测器。虽然离子发动机过去在卫星上经常使用,但都是作为辅助发动机,用于姿态调整或者轨道维持;而深空1号第一次将离子发动机作为主发动机使用。深空1号的离子发动机也是迄今为止将电能向推力转化效率最高的,在太空中运行寿命最长的,也是比冲量最高的,比冲量超过3,000秒。

这种离子发动机追根溯源可以推到上个世纪的60年代,但到现在仍可以满足美国宇航局的两个目标,也就是大大减少旅程时间和初重,以低成本更快地完成行星际任务。而1998年10月24日发射的深空1号探测器的任务除了测试12项先进科技(其中包括作为主发动机的离子发动机),就是为了完成探测小行星Braille和遥远的彗星Borrelly这样的行星际任务。在圆满完成任务后,深空1号于2001年12月18日报废。

离子发动机工作的核心就是对喷出的气体进行离子化,这一般是以电子轰击的方式来实现。通过加热和电场加速的方式将电子从阴极向阳极发射并进入放电室,气体推进拥有离子发动机的深空1号剂氙同样被注入放电室,并在放电室施加磁场,增加氙原子和电子碰撞的可能性。碰撞后,氙原子核周围的部分电子将被击开,使得氙原子被电离,带上正电。这种离子非常活跃并且移动得非常快。

位于放电室后边的高压栅极将最后产生推力,方式是制造静电场,对离子生成拉力让它们向栅极方向加速,当它们通过后,速度将达到每秒31.5公里,并被集中成一个离子束最终从飞船尾部喷出去,深空1号尾部喷射出的蓝色离子火焰。

需要注意的是,在最后阶段一个中和器收集多余的电子并把它们注入喷出的离子束,这样可以避免飞船被带上大量的负电荷。

深空1号探测器是美国宇航局新千年项目的第一艘飞船,它的离子发动机产生0.09牛顿的推力,比冲量是3,300秒,每天消耗100克氙推进剂,在发动机全速运转的情况下,每过一天时速就增加25~32公里。深空1号由德耳塔火箭送上太空,然后由离子发动机推动。最初发动机只开动了4小时就突然停机,但后来恢复了运转并从此一直顺利运行,其最终的工作时间超过14,000小时,超过了此前所有传统火箭发动机工作时间的总和。而最初发射深空1号时,只计划运转200个小时以证明这种离子发动机是可行的。美国宇航局在地球上实验室中,和深空1号发动机一样的离子发动机甚至持续工作了更长的时间。

深空1号离子发动机的工作方式只是许多方式中的一种而已,这种方式被称为Ion Engine,作为离子发动机的代表,但使用电来产生离子浆并进一步推动飞船的具体方式还有好多:

霍尔推进器

利用轴向电场(axial electric field)来加速离子。一个辐射磁场和轴向电场相互作用来产生方位角霍尔电流(azimuthal Hall current),这个电流部分限制电子,让放电室中电离化效率比较高。这是个在苏联发展成熟的技术,一般用于卫星姿态稳定。脉冲离子浆推进器(Pulsed plasma thrusters,PPT) 这种方式利用电流弧光,在固体推进剂(几乎总是用特氟隆)中产生快速而可靠的脉离子发动机图片冲燃烧。PPT用于姿态控制效果很好,不过它是利用电来推进的系统中效率最低者之一,推进效率不到10%。磁致离子浆动力推进器(Magnetoplasmadynamic thruster,MPD) 也被称为洛伦兹力加速器(Lorentz-force Accelerator,LFA),它使用洛伦兹力(磁场和电场共同对带电粒子施加的力)来推动离子。MPD技术已经在实验室中被开发出来,但对它的商业兴趣很低,尽管在理论上它能产生极高的比冲量,因为它和Ion、Hall以及PPT方式不同,不使用电级,使用电级对离子进行加速的方式会使喷出的加速流被位于出口的电子源中性化,从而减低效率。MPD可以稳定运行,也可以脉冲运行。可变比冲磁致离子浆火箭(Variable-specific-impulse magnetoplasma rocket,VASIMR: 《北京青年报》2000年的一篇文章《打造星际飞船新引擎》把这个方式大大吹嘘了一番,认为是未来的方向。其实这种系统只是介于高推力低比冲的传统发动机和低推力高比冲的离子发动机之间的类型,可以在这两者之间调整参数。它也不用电极,而是在发动机前室使用电波来对氢推进剂进行离子化,然后在中室用磁场让其按自然频率绕磁场旋转,并使用无线电按照同一频率轰击,让温度上升到1千万K,再从后室把旋转变成轴向运动并释放出去。

最后,在离子化方面,日本设想用微波的方式来进行,用微波来击活推进剂气体的电子,之后就是和深空1号一样把离子聚集成束并以静电场加速喷射出去。美国宇航局也采用了日本人的办法测试了新的微波离子发动机,并得出结论认为这种方式可以让发动机工作得更久。

上述各离子发动机的共同特点都是使用电能,利用电来直接电离,或者用电来制造磁场、电波、微波等,然后用它们来对推进剂进行离子化。所以它们也被称为电动推进发动机。日本"隼鸟"号探测器(The Hayabusa Spacecraft) 多灾多难"不死鸟"是对它最好的说明,该探测器装备有化学发动机及离子发动机,两者曾经一度出故障导致仅靠惯性飞行,后离子发动机重点火成功,于2010年6月14日顺利回收,成为在人类历史上首次在月球以外的天体着陆并回归地球的飞行器。是离子发动机优势的力证。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读