⑴在原假设为真时,决定放弃原假设,
称为第一类错误,其出现的概率通常记作α;
⑵在原假设不真时,决定接受原假设,
称为第二类错误,其出现的概率通常记作β.
通常只限定犯第一类错误的最大概率α,
不考虑犯第二类错误的概率β.这样的假设
检验又称为显著性检验,
概率α称为显著性水平.
当H0为μ=μ0,假设检验的结果是放弃H0时,
如果α=0.05,则称μ与μ0有显著的差异或
差异显著;如果水平α=0.01,则称μ与μ0有
极显著的差异或差异极显著.
假设检验的步骤如下:
⑴提出H0和H1;
⑵指定概率α;
⑶寻求统计量g(X1,X2,…,Xn)及其分布;
⑸当统计量的观测值g(x1,x2,…,xn)满足
不等式时放弃H0,否则接受H0.
⑷在H0为真时构造小概率事件并推导
g()所满足的不等式;
习惯上称观测值g(x1,x2,…,xn)所
满足的不等式为假设检验方案,称这个不等式所确定的观测值g的取值范围为假设检验的放弃域.
放弃域由两个区间构成的假设检
验被形容为双侧检验,放弃域由一个
区间构成的假设检验被形容为单侧检
验.
H0为相等,H1为不相等的假设检验
为双侧检验,观测值g()较大或较小时
放弃H0;
H0为相等,H1为大于的假设检验为单
侧检验,观测值g()较大时放弃H0;
H0为相等,H1为小于的假设检验为
单侧检验,观测值g()较小时放弃H0.
2.一个正态总体均值或方差的假设检验
为,修正方差的观测值为s*2,离均差
平方和的观测值为ss,显著性水平为α,
则有:
设总体X服从N(μ,σ2)分布,X的一个
样本为X1,X2,…,Xn,均值为,修正
方差为S*2,离均差平方和为SS,样本
的观测值为x1,x2,…,xn,均值的观测值
结论1)若σ2已知,对于给定的数值μ0,
作一个正态总体均值的假设检验时,
H0为μ=μ0,而H1分别为
①μ≠μ0,②μ>μ0,③μμ0,③μ37.72
计算出u=1.818,
例《品种提纯》一个混杂的小麦品种,
其株高的标准差为14cm,经提纯后随机地
抽出10株,它们的株高(单位:cm)为90,
105,101,95,100,100,101,105,93,97,试
检验提纯后的群体是否比原来的群体较为
整齐,α=0.05.
解:提纯后的群体应该比原来的群体
较为整齐,故设
H0为σ2=196,H1为σ2μ2,③μ1μ2,③μ1