正火是将钢件加热到上临界点(AC3或Acm)以上40~60℃或更高的温度,保温达到完全奥氏体化后,在空气中冷却的简便、经济的热处理工艺,其目的是在于使晶粒细化和碳化物分布均匀化。
正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。
(1).正火加热温度
通常对于亚共析钢正火的加热温度通常为Ac3以上30~50℃,而对于中碳合金钢的正火温度正火温度通常为Ac3以上50~100℃,保温一定时间后取出喷雾冷却这种冷却方式称为高温正火。由铁碳合金相图如图6可知42CrMo的加热温度范
(2).正火加热保温时间
保温时间,这个问题比较复杂,一般由试验确定,但也有个经验公式:t = αKD t—保温时间(min) α—加热系数(min/mm) K—工件加热是的修正系数 D—工件的有效厚度(mm)
工件有效厚度的计算原则是:薄板工件的厚度即为其有效厚度;长的圆棒料直径为其有效厚度;正方体工件的边长为其有效厚度;长方体工件的高和宽小者为其有效厚度;带锥度的圆柱形工件的有效厚度是距小端2L/3(L为工件的长度)处的直径;带有通孔的工件,其壁厚为有效厚度. 一般情况下,碳钢可以按工件有效厚度每25毫米为一小时来计算,合金钢可以按工件的有效厚度每20毫米一小时来计算保温时间,加热时间应为2~3小时左右。
(3).正火的目的
正火的主要目的是消除锻造缺陷,使其成分均匀,硬度和韧性好,并改善材料的切削性,也为调质做好了组织准备。
正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。
42CrMo的工艺流程中的正火的主要用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。一般均安排在毛坯生产之后,切削加工之前,或粗加工之后,半精加工之前。正火的目的是为了细化晶粒、改善组织,提高切削加工性能,为淬火和最终热处理做好准备。
围为850~900℃。加热温度过低先共析铁素体未能全部溶解而达不到细化晶粒的作用,加热温度过高会造成晶粒粗化恶化钢的力学性能,所以我们可以选着870℃。
调质处理:淬火后高温回火的热处理方法称为调质处理。高温回火是指在500-650℃之间进行回火。调质可以使钢的性能,材质得到很大程度的调整,其强度、塑性和韧性都较好,具有良好的综合机械性能。调质处理后得到回火索氏体。回火索氏体(tempered sorbite)是马氏体于回火时形成的,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。它也是马氏体的一种回火组织,是铁素体与粒状碳化物的混合物。此时的铁素体已基本无碳的过饱和度,碳化物也为稳定型碳化物。常温下是一种平衡组织。
时效处理:为了消除精密量具或模具、零件在长期使用中尺寸、形状发生变化,常在低温回火后(低温回火温度150-250℃)精加工前,把工件重新加热到100-150℃,保持5-20小时,这种为稳定精密制件质量的处理,称为时效。对在低温或动载荷条件下的钢材构件进行时效处理,以消除残余应力,稳定钢材组织和尺寸,尤为重要。
调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。
调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度,回火后硬度按图要求来检查。
1).淬火温度的选择。
42CrMo钢,含碳量为0.42%,属于亚共析钢,含碳量为0.42%钢的Ac3为800℃,由亚共析钢淬火温度要求T=Ac3+30~50(℃)可得,淬火温度T=830~850(℃),我们可以设定在840℃。
热处理类型 正火 热处理硬度 约220HBS
加热温度℃ 870℃ 加热速度 约300℃/h
保温时间 1h 冷却速度 约20℃/s
2).淬火保温时间的确定。
根据有效长度Φ/2=80/2=40mm,可查知,保温时间要大于56min,为保证获得理想组织可选1h。
3).确定淬火介质。
根据零件使用要求,根据图7可知要求淬火后心部硬度大于HRC23时,至水冷端距离小于33mm方可达到要求,在图8中可查出之水冷端距离小于33mm的油中淬火约最大直径为87mm,符合要求(42CrMo钢的淬透性高,所以应尽量选择油淬,可增加奥氏体的稳定性)。
4).确定回火温度。
不同含碳量与回火温度的曲线中(《钢的热处理》胡光立、谢希文 西北工业大学出版社。)查出含碳量为0.4~0.5%的曲线带,再在纵坐标上查出HRC=35~40,取中值36其曲线带相交的点即为加热温度,大约为480℃
5).确定回火保温时间。
由于回火保温时间为480℃,根据经验公式可知回火保温时间大约为1~1.5h。 回火后空冷即可。
6).调质的目的。
调质使工件具有优良的综合力学性能,即高强度和高韧性的适当配合,还可提高一定的耐磨性,以保证零件长期顺利工作。
感应淬火即感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。中频,频率1000HZ用于容炼,高频,用于金属表面淬火,退火,中频2.5KCHZ用于内部组织调质,热烘装,等。
感应加热淬火加热速度快,淬火质量好,较一般淬火硬度高,得到极细马氏体,且淬硬层深度易于控制,易实现机械化和自动化。
感应加热淬火的原理是:电磁感应产生同频率的感应电流即涡流。涡流在工件截面上的分布是不均匀的,心部几乎等于零,而表面电流密度极大,称为“集肤效应”,频率愈高,电流密度极大的表面层愈薄。依靠这种电流和工件本身的电阻,使工件表面迅速加热到淬火温度,而心部温度仍接近室温,然后立即喷水冷却,使工件表面淬硬。
齿轮轴的工作能力一般取决于强度和刚度,齿轮轴经过淬火,使齿轮轴的刚度强度都提高了,从而更加耐用,质量更高。常用齿轮轴淬火设备有以下几种:
超音频淬火设备
型 号 | WH-VI-16 | 输入功率 | 16kw |
电 源 | 单相220V | 电 压 | 180-250V |
冷却水压 | 0.1Mpa | 输入电流 | 42A |
水温保护 | 55℃ | 效率 | 90% |
振荡频率 | 10-80KHz | 冷却水压 | 0.1Mpa |
外形尺寸 | 500×240×450 mm³ | 重量 | 20kg±5% |
高频淬火设备
型号 | WH-VI-50 | 输入功率 | 50KW |
输入电压 | 342V-430V | 最大输入电流 | 75A |
冷却水流量(主机) | 20L/min(0.1mpa) | 冷却水流量(变压器) | 18L/min(0.1mpa) |
振荡频率 | 15-35KHZ | 冷却水压 | 0.1-0.3Mpa |
主机体积 | 590×450×780mm3 | 变压器体积 | 420×355×450mm3 |
主机重量 | 55±5%kg | 变压器重量 | 35±5%kg |
中频淬火设备
型号 | GS-ZP-200 | 输入功率 | 200KW |
最大输入电流 | 300A | 工作电压 | 342-430V |
振荡频率 | 2-4KHz | 进水口水压 | 0.2-0.5Mpa |
主机体积 | 810*530*1780 | 分机体积 | 500*800*580 |
水温保护点 | 50℃ | 机身颜色 | 灰色+白色 |
淬火机床
最大淬火长度 (mm) | 4000 | 最大回转直径 ( mm) | ≤φ500 |
工件移动速度 ( mm/s) | 2-60 | 旋转速度 (r/min) | 25-125 |
顶尖移动速度 ( mm/min) | 480 | 工件重量 ( kg) | ≤1500 |
输入电压 ( V ) | 三相380 | 电机总功率 ( kw) | 3 |
淬火已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。因此感应淬火设备的发展也是日益壮大。选用好的淬火设备,能使工作事半功倍。