光电子器件主要有作为信息载体的光源、辐射探测器、控制与处理用元件器件、光学纤维、显示显像器件。
作为信息载体的光源,热辐射的过程是很难进行快速控制的,但可以对它发出的光束加以调制、滤波或其他处理,使光束在传播途中带上信息。热辐射以外的发光光源自然也可以在传播过程中带上信息,但更主要的是在发射过程中就带上信息。通常,采用低压即可驱动的半导体PN结发光二极管,尤其是高亮度半导体发光二极管和半导体激光器。它们具有反应快、易调制、体积小和光强大等优点。激光具有良好的单色性、相干性、方向性和高光强,这些性能有利于光通信和其他应用。
辐射探测器
即光-电和光-光转换器,分为利用光电效应的和热效应的两类。
①光电效应:分为外光电效应和内光电效应。外光电效应就是光电子发射效应,利用这种效应的器件都是真空电子器件。例如,光电倍增管,其光电阴极能将光信号转换成一维(时间)电子信号,经多次次级发射,电子倍增电极把信号增强后从阳极输出。这种器件的灵敏度高,甚至可用它组成光子计数器,用以探测单个光子。已研制成二维(空间)光子计数器,用以检测极微弱的光信息。又如像增强管,将 X射线或紫外线转换成光电阴极敏感的光,或采用对红外线灵敏的光电阴极,它使成像光电阴极上的光图像发射出相应的光电子,这些光电子经加速并成像后轰击荧光屏,输出可见光,发出更亮的光图像。它是一种光-光转换器件。这就是 X射线或紫外线像增强管和红外变像管的工作原理。这种器件能起扩展人眼对电磁波波段敏感范围的作用。利用内光电效应的器件,都是半导体器件。其主要原理是光电导和光生电动势两种效应。光电导型探测器由单一半导体制成,或制成二极管,称为半导体光电二极管。受光照时,其电阻发生变化。其中光电二极管通常在反向偏压条件下工作。如果反向偏压足够高,载流子通过PN结的电流直接反映出单位时间内探测器所接收的光能。光电二极管也可在不加偏压的条件下工作。这时,辐射的照射将使PN结的两端产生电动势,其短路电流正比于所接受的辐射功率。红外热成像系统的探测器通常是光电导型。常用的有碲镉汞、碲锡铅、锗掺汞探测器等。它们都必须在低温下工作,以降低探测器的热噪声。
②热效应:利用热效应的探测器通称为热敏型探测器,主要是利用物体因受辐射照射后温度升高所引起的电阻的改变、温差电动势的产生、自发极化的改变等效应来测量辐射功率。这类探测器都用在红外波段,优点是响应率与波长无关,在室温下也能探测长波辐射等,但响应时间比光电型探测器长得多。
控制与处理用元器件
光的主要特征有强度、光谱、偏振、发光时间和相干性等。光束在传播中,则有方向性、发散或会聚等特征。控制元件的功能在于改变光的这些特征。为了使光束偏转、聚焦和准直等,常使用反射镜、透镜、棱镜和光束分离器等。反射镜常使用金属膜或介质膜,后者的反射系数高并具有选择性。利用全反射可制成反射镜,用于倒像、转像、分束和全反射等。为改变光束的其他特征,常用的元件有滤光片、棱镜、光栅、偏振片、斩光器、受电场控制的电光晶体和液晶等。
电光开关不仅可以改变光强和偏振,还可控制光通过的持续时间,是广泛应用的一种器件。其结构是在相互正交的两块偏振片之间放进一块双折射晶体,在晶体上加一电场,则通过晶体的光偏振方向将发生旋转,转角的大小决定于电场的强度。因此,调节电场的强度就可以改变透射光的强度;改变电场的作用时间则可调制光的持续时间。
利用声波对光的衍射效应,可控制光束的频率、光强和传播方向。在接近布喇格衍射的条件下,声光的相互作用使光束偏转。声频改变时,偏转角也相应地按比例变化。在衍射效应较小时,衍射光的强度与声波的强度成正比。利用信息调制声波的强度,就可以通过这种比例关系调制衍射光的强度。这种控制方法已在光的传播、显示和信息处理方面得到广泛应用。
在光数字处理系统中,关键是研制光学晶体管或光学双稳态器件。已研制出的光学双稳态器件,大体上可分为两类:本征型或称全光学型和光电混合型。一般地说,这种器件由非线性介质、反馈系统和光源三部分组成。可以把出射光强的高态和低态,相应地视为“开”和“关”状态。光晶体管可进行光放大、调制、限幅和整形,并可构成光逻辑门。
光存储器包括光盘和全息超微存储底片等,可用于光录像电视和大容量信息存储,也可用于图书资料存储。
光学纤维
光纤波导可将进入光纤的光限制在光纤内部,按光纤延伸的任意方向传播。光纤技术的主要内容有:①利用光纤进行一维(时间)信息传输,可传送模拟或数字化脉冲信号。光纤可分为阶跃折射率光纤、梯度折射率光纤和单模光纤。②利用光纤进行二维(空间)图像传输。如果把几十万根甚至几百万根柔性光纤的输入与输出端按相同的规律排列成二维列阵,就制成了传像束。每一根光纤就是一个像素。它可以弯曲并直接传送图像。如将所有光纤丝热压在一起,切下一段就成为光纤面板,它可将一个端面上的图像直接传送到另一个端面上,可用作像增强管的输入和输出窗口。有光纤面板的像增强器,可以串联使用。经过特殊加工,光纤面板还可做成 180°光纤倒像器、破像器、或光学纤维锥,可使图像倒置、保密、放大或缩小。③利用光纤传输光能。使用柔性光纤无规则排列成束而构成传光束。它不能传送图像,但可用于光能传输、光分配、信号指示、光控、传感和信息采集等方面。④光纤传感器是利用光纤在外场作用下,光传播特性(如强度、相位、偏振等)发生变化并获取被测量信息的一种光纤系统。⑤梯度光学元件的折射率,随离开光轴距离的增加而呈抛物曲线下降。它具有自聚焦微透镜作用,可用于集光或成像。
显示显像器件
用于产生光模拟信号、数字符号和光图像,分为真空器件和非真空器件两大类。前者包括电子束管、低压荧光管和白炽灯泡等;后者包括发光二极管、场致发光屏、等离子体和液晶显示器件等。除液晶显示需要环境照明属于被动显示外,其他都可以发光,属于主动显示。显示方式有两种:①用线段组合成需要显示的数字、符号或图案。例如,用七画拼成各个数字和符号。计算器、数字表等所用的发光二极管或液晶显示器大都采用这种方式。②在多元列阵中选择一部分位置合适的单元组成所需的字符或图案,单元可采用白炽灯、发光二极管、场致发光屏和液晶等。这是一种没有灰度级的矩阵交叉屏。
在显像技术中,广泛应用黑白和彩色电视显像管。显像管利用扫描电子束轰击荧光屏产生黑白或彩色画面。前面提到的光-光转换器件如像增强器和变像管,也是显像器件。此外,也可采用有亮度等级的多元列阵,如在固体平板显示或显像屏中,利用两组相互正交的电极。当其中正交的两个电极的交叉点上加有足够高的电位差时,就形成发光点。它是一个像元,很多明暗不同的像元组成一张图片。利用这种结构已制成场致发光屏、液晶屏和等离子体显示屏等。