造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

铒镱共掺双包层光纤铒镱共掺

2018/06/19165 作者:佚名
导读: 光纤放大器的最初出现是为了适应光通讯的发展要求,而通讯系统中传输的光信号功率一般较低:微瓦(μW)到几十毫瓦(mW)量级。单级 EDFA 输出的最大功率约为 23dBm,可以满足传统的干线长距离光纤网络传输的应用。随着光纤网络进一步向局域网、接入网的发展,光纤距离最终用户的距离越来越近,很多情况下已经是光纤直接连接到用户。特别是随着近年来光纤到户(FTTH)、光纤到大楼(FTTB)、无源光网

光纤放大器的最初出现是为了适应光通讯的发展要求,而通讯系统中传输的光信号功率一般较低:微瓦(μW)到几十毫瓦(mW)量级。单级 EDFA 输出的最大功率约为 23dBm,可以满足传统的干线长距离光纤网络传输的应用。随着光纤网络进一步向局域网、接入网的发展,光纤距离最终用户的距离越来越近,很多情况下已经是光纤直接连接到用户。特别是随着近年来光纤到户(FTTH)、光纤到大楼(FTTB)、无源光网络(PON)、光纤有线电视传输系统的大规模铺设应用。在这些新兴系统中,用户数从几百到几千甚至上万个,功率预算非常高,这对光纤放大器的输出功率提出了更高的要求。EDFA 虽然成功应用在了长途干线传输系统中,但在上述新型网络形态下输出功率远远不能达到系统要求。采用多台 EDFA 级联可以提高输出功率,但必然增加系统成本、复杂性并降低系统可靠性,同时会附加更多的自发辐射(ASE)噪声,使得系统性能劣化。另外在越来越多的激光加工、激光打标、激光武器、空间激光通讯、非线性频率变换方面,需要几瓦到几百瓦高功率连续或峰值功率在千瓦(kW)到兆瓦(MW)的脉冲激光输出,迫切需要能够支持高功率放大信号输出的光纤放大器。

EDFA 的增益光纤采用的是纤芯掺入铒离子的普通单模光纤,纤芯直径在8~10μm 之间,包层直径一般为 125μm,泵浦光和信号光同时在纤芯中传输。要提高 EDFA 的输出功率,可以提高泵浦功率,但由于纤芯直径很小,数值孔径也较小(0.1~0.2),导致能够有效耦合进入纤芯的泵浦功率仅为几百毫瓦左右;另一方面,可以通过提高铒离子的掺杂浓度来提高增益光纤的储能,但在铒离子浓度过高时会出现浓度淬灭现象,导致高功率运转时 EDFA 工作失效。以上两个原因限制了 EDFA 输出功率向高功率的提升。

随着新型光纤理论和制造技术的不断提升、对高功率放大器增益光纤的巨大需求、包层泵浦技术和离子共掺技术的出现、以及大功率多模半导体泵浦激光器的出现可以很好的解决上述问题。

双包层光纤,采用纤芯、内包层和外包层结构,主要是引入了直径较大的内包层,内包层数值孔径通常可以做的较高,允许大功率泵浦光直接耦合到直径为几十 μm 到几百 μm 的内包层,比传统光纤的耦合面积增加了 2 个数量级,因此入纤功率和耦合效率都大大得到提高。纤芯直径仍然保持单模光纤的水平以保持较好的光束质量,同时纤芯掺入激活离子。泵浦光耦合入内包层,在内包层与外包层的交接处发生全内反射,反复通过并激活纤芯离子,当信号光通过纤芯时即通过受激辐射得到增益放大。

在基于双包层光纤的大功率激光放大器研制方面,起步最早的是掺镱光纤放大器。因为镱离子为简单的双能级结构,不存在激发态吸收和能量上转换问题。

镱离子具有很宽的泵浦吸收带(800nm-1100nm)且在典型的泵浦波长 915nm 和975nm 处具有很强的吸收峰,对泵浦波长的带宽限制并不明显,可以采用成本较低的多模大功率泵浦激光器。在这些泵浦波段,商用化的半导体多模泵浦激光器的输出功率已经达到了千瓦量级。采用较短的光纤即可对泵浦光产生有效地吸收,导致掺镱高功率光纤放大器的斜率效率非常高,可以超过 80%。因此掺镱高功率光纤放大器备受青睐,在各方面努力下,各项指标也不断得到优化提高。连续光放大单纤平均功率超过了 1 万瓦,而脉冲放大峰值功率更是达到了兆瓦(MW)量级。在国家级应用层面,美国国家航空航天局(NASA)在其主持的星际光通信计划中也采用了掺镱双包层光纤作为放大介质,得到了峰值功率 1.6kW、平均功率 10W、脉冲重复频率在 3-30MHz,接近衍射极限的脉冲光束输出。

伴随着高功率光纤激光器的进步,一些新的应用领域不断出现。特别是兴起的光接入网、自由空间光通讯、激光雷达、地球引力波探测、地面搜索、激光测距等方面,需要 1.5μm 波段高功率连续或脉冲光纤放大器。掺镱高功率光纤放大器尽管在技术上比较成熟,但其工作在 1.06μm 波段,在需要 1.5μm 波段的这些应用中显得力不从心。人眼在 1.5μm 波段的损伤阈值要比 1.06m 波段高4 个数量级以上,具有"人眼安全"的特点,这在激光测距、激光雷达、遥感、空间通信等需要人员参与的领域有重要意义,所以人们越来越多的开始关注并发展高功率 1.5μm 波段光纤放大器。

单独掺杂铒的增益光纤由于受到浓度淬灭效应的影响,无法满足高功率运行要求。在双包层光纤包层泵浦理念的基础上出现了铒镱(Er/Yb)共掺双包层光纤。这种双包层增益光纤因为镱离子浓度大于铒离子浓度,使得一个铒离子被多个镱离子包围,避免了铒离子的簇聚,同时提高了铒离子的掺杂浓度。在这种掺杂光纤中是由镱离子先吸收泵浦光,然后通过敏化作用激发铒离子,形成铒波段粒子数反转,从而充分利用了镱离子吸收带很宽、泵浦吸收系数大、允许高功率多模泵浦的优点。Er/Yb共掺双包层光纤放大器的主要优势体现在以下几个方面:(1)工作在 1.5μm 波段 (2)高输出功率 (3)较高的能量转化效率 (4)高峰值功率,高重复频率的脉冲输出 (5)通过优化可以实现接近衍射极限的光束质量。 在激光定位、远程传感、成像和照明等领域需要高功率、脉宽在几十个 ns、重复频率为几十 kHz 的光脉冲,并且需要脉冲光纤放大器能够产生几百 kW 到几 MW 的峰值功率。 高峰值功率同样广泛应用于材料处理、激光打标和高次谐波的产生中。基于这些,尤其是光纤通信与卫星激光通信的巨大需求,Er/Yb 共掺双包层光纤放大器最近几年得到了比较广泛的研究也取得了很多进展,很多文献报道了 1.5μm 波段脉冲放大器和激光器。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读