在t→t1 时线圈中流过正向电流 ,则磁头下方将出现一个与此对应的磁化区。磁通进入磁层的一侧为S极,离开磁层的一侧为N极。如果磁化电流足够大,S极与N极之间被磁化到正向磁饱和,以后将留下剩磁 ,用箭头 表示。由于磁层是拒磁材料,剩磁 的大小与饱和磁感应强度 相差无几。
从t=t1 (电流方向变化前),由于记录磁层向左运动,而磁化电流维持 不变,相应地出现(b)所示磁化状态。即S极左移一段距离 ,而N极仍位于磁头作用区右侧不变。
当t→t2 时,磁化电流改变方向, ,相应地磁层中的磁化状态也出现翻转,如(c)所示。移离磁头作用区的S极以及一段 区,维持原来磁化状态不变(剩磁)。而磁头作用区下出现新的磁化区,左侧为N极,右侧为S极,N-S之间是负向磁饱和区 ,用箭头 表示。
图3-2 读/写过程示意图
于是,在记录磁层中留下一个对应于 的位单元,它的起始处与结束处两侧各有一个磁化状态的转变区。根据转变区的存在及其性质(位置、方向、频率等),体现所存储的信息。
读出时,磁头线圈不加磁化电流,作为读出线圈使用。当已经磁化的记录磁层位于磁头下方时,由于铁芯部分的磁阻远小于头隙磁阻,则记录磁层与磁头铁芯形成一个闭合磁路。大部分磁通将流经铁芯再回到磁层。如果记录磁层在磁头下方运动,则各位单元将依次经过磁头下方。每当转变区经过磁头下方时,铁芯中的磁通方向也将随之改变,于是在读出线圈产生相应的感应电势。
感应电势e即读出信号,它的方向取决于记录磁层转变区方向(由 变为 ,或者由 变为 ),其幅值大小则与 值有关(最大变化量 )。
如果记录磁层中没有转变区,维持一种剩磁状态( 或 ),则磁层经过磁头下方时,铁芯中磁通没有变化,也就没有读出信号。
根据上述读/写原理,归纳磁表面存储器具有如下特点:
①记录信息可以长期保存,属于非易失性存储器(原则上允许记录介质脱机保存,但要注意防止外界强磁场破坏其剩磁状态);
②非破坏性读出,读出不影响所存信息;
③记录介质可以重复使用;
④由于是连续记录,所以存取方式基本上是顺序存取方式,不能如RAM那样随机访问;
⑤由于是连续记录,需要比较复杂的寻址定位系统;
⑥由于在相对运动中进行读写,可靠性低于半导体存储器,需要比较复杂的校验技术。