造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

密集波分复用器光放大技术

2018/06/19129 作者:佚名
导读: 对于长距离的光传输来说,随着传输距离的增长,光功率逐渐减弱,激光器的光源输出不超过3dBm,为了保证一定的误码率,接受端的接受光功率必须维持在一定的值上,例如-28dBm,因此光功率受限往往成为决定传输距离的主要因素。光放大器(OA)的出现和发展克服了高速长距离传输的最大障碍--光功率受限,这是光通信史上的重要里程碑。OA的主要形式有半导体光放大器(SOA)和掺铒光纤放大器(EDFA)两种,

对于长距离的光传输来说,随着传输距离的增长,光功率逐渐减弱,激光器的光源输出不超过3dBm,为了保证一定的误码率,接受端的接受光功率必须维持在一定的值上,例如-28dBm,因此光功率受限往往成为决定传输距离的主要因素。

光放大器(OA)的出现和发展克服了高速长距离传输的最大障碍--光功率受限,这是光通信史上的重要里程碑。OA的主要形式有半导体光放大器(SOA)和掺铒光纤放大器(EDFA)两种,前者近来发展速度很快,已经逐步开始商用,并显示了良好的应用前景;后者较为成熟,已经大量应用,成为目前大容量长距离的DWDM系统在传输技术领域必不可少的技术手段。

WDM系统对EDFA有一个特殊的要求--增益平坦,因为通常情况下,EDFA在1.55um波长窗口的工作带宽为30~40nm,将它用于WDM系统时,因各信道的波长不同而有增益偏差,经过多级放大后,增益偏差累积,低电平信道信号的SNR恶化,高电平信道信号也因光纤非线形效应而使信号特性恶化,最终造成整个系统不能正常工作。因此,要使各个信道上的增益偏差处在允许的范围内,放大器的增益必须平坦。

增益均衡技术

利用损耗特性和放大器的增益波长特性相反的增益均衡器来抵消增益的不均匀性称为增益均匀技术。这种技术的关键在于放大器的增益曲线和均衡器的损耗特性准确吻合,使综合特性平坦。现在用的增益均衡器主要有标准光滤波器、介质多层模滤波器、光纤光栅及平面光波导等。

增益均衡用的光纤光栅是一种长周期光纤光栅。其光栅周期一般为数百微米。其损耗峰值波长和半功率点宽度可以由紫外光照射量或光栅长度来控制。因此,通过多个长周期光栅组合,可以构成具有与EDFA增益波长特性相反的增益均衡器。使用该技术,在1528nm到1568nm的40nm带宽内,可以实现增益偏差在5%以内的带宽增益平坦的EDFA。

光纤技术

这里所说的"光纤技术"是指在进一步研究掺铒光纤特性的基础上,通过改变光纤材料或者利用不同光纤的组合来改变掺铒光纤的特性,从而改善掺铒光纤放大器(EDFA)的增益特性。光纤技术除了改善增益特性外,还可改善EDFA的噪声特性和扩宽增益带宽。

(1) 掺铝的EDF,是在光纤中除了掺铒外还掺入一定的铝,改变玻璃的组成成份,迫使铒的放大能级分布改变,加宽可放大的频率范围。普通的以硅光纤为基础的掺铒光纤放大器EDFA的增益平坦区很窄,仅在1549nm至1561nm之间,大约12nm的范围,通过掺铝,可以将平坦区的范围扩展为1540nm到1560nm。

(2)氟化物EDF,是在EDF中掺入一定比例的氟化物,使用这种光纤制作的光放大器,可以将增益的平坦区的波段扩展到1530~1560nm,在这30nm的区域内,增益的平坦度达到1.5dB。

(3)掺铒碲化物光纤,是在EDF中掺入一定比例的碲化物。使用这种光纤制作的光放大器,可放大的频带特别宽,而且与石英系光纤的其他掺铒光放大器相比,频带向长波长一侧移动。

(4)掺钇EDF,是在掺铒光纤中加入一定比例的钇(Y),由于钇(Y)可以作为铒的激活剂,以工作792nm附近的光源作为泵浦源,制成铒/钇光纤放大器在1544nm到1561nm波段的17nm带宽内,可以获得0.5dB以内的增益平坦度,输出功率大于+26dBm,噪声系数小于5dB。

(5)混合型EDFA,是使用不同掺杂材料的光纤进行组合,制作混合型EDFA。这种组合方式,不仅可以提高设计的自由度,而且还可以使增益平坦度、噪声特性、放大效率均达到最佳。

在DWDM光传送网络中,应根据系统使用的信道数、系统的要求来选择使用不同种类的光放大器,要求越高性能越好的EDFA成本也越高。一般对于8个信道600km长度的DWDM系统,使用掺铝EDFA的较多。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读