透地雷达今日已在许多领域得到应用。地球科学家使用它来研究基岩、土壤、地下水和冰。有时后透地雷达会被用来寻找埋藏在河床下方的较重颗粒聚集区,可用来寻找黄金或冲积砾石层中的钻石。中国的玉兔号月球车在车体底盘也搭载了透地雷达以探测月球表面土壤和外壳。
透地雷达在工程上的应用包含了结构和路面的无损检测,对地下结构和管线进行定位,以及研究土壤和基岩。在环境整治上,透地雷达可用来寻找垃圾掩埋场、污染羽和其他需要进行整治的区域。而在考古地球物理学上,透地雷达可用来映射考古学上的遗物、特征和墓地并绘制成图。在执法上则应用透地雷达寻找隐密墓地或尸体等物体掩埋区域。军事上则可使用透地雷达侦测地雷、未爆弹药和地道。
1987年以前,英国伯明翰的弗兰克利水库每秒漏水量达到540升。1987年科学家使用透地雷达成功找到漏水区,并将漏水区隔离。
孔内雷达应用透地雷达技术以测绘钻孔以外的地表下结构。现代的定向孔内雷达系统可在单一钻孔内探测并形成3维影像。
另一个透地雷达常见的应用就是对地表下的管线进行定位,这是因为透地雷达可以产生地表下电力、排水等各种管道的3维影像。
英国第四台电视节目《考古小队》中常可看到透地雷达被用来确认适合进行开挖以搜寻物品的情节。1992年时英国办案人员使用透地雷达找到绑架犯麦可·萨姆斯绑架了一名地产代理后所获得,并且被埋在野外的15万英镑赎金。
透地雷达发射的电磁脉冲讯号会被射入地表之下。地表下的物体和地层将会使电磁脉冲被反射,并且被接收天线收到。探测者可从反射波的传递时间得知深度,而这些资料可绘制成图表上的曲线,例如在平面视图中将特定的深度分离出来,或作为3维模型。
透地雷达在有利的条件下(均质砂土区域最理想)是相当有用的工具。就和其他使用于考古学的地球物理方式一样(挖掘除外),透地雷达探测可以发现考古文物所在位置,并且将考古特征测绘成地图,而不会有损伤文物的风险。在考古学使用的地球物理探勘方式中,透地雷达可以侦测到一些相对体积较小的物体,并且深度较深,更有辨别异常反射波源深度的能力。透地雷达主要的缺点是在比较不理想的环境中,探测能力会受到严重限制。黏土和淤泥等细颗粒沉积物常对透地雷达的探测造成困扰,这是因为这类物质的高电导率会使讯号强度衰减。岩石或不均匀沉积会使透地雷达的讯号被散射,使有效讯号的强度衰减,并使外部噪声增加。
单一行透地雷达资料可以显示地表下特定深度的剖面图。而系统性的多行资料则可以组成3维或特定剖面影像。探测获得的资料可以组成3维影像,或水平、垂直的剖面图。水平的剖面(称为"深度剖面"或"时间剖面")是从平面视图中分离出特定深度而绘成。时间剖面在2014年的时候是应用在考古学上的标准地球物理技术,这是因为水平图层通常是表示不同时期文化活动最重要的工具。