锁相环路是实现相位自动锁定的控制系统 , 也就是说锁相环属于自动控制系统 。根据自动控制理论及各部分的数学模型 ,就可以得到锁相环的线性相位模型及传递函数 ,进而推导得出锁相环总输出相位噪声功率谱密度公式 。其公式及推导过程在参考文献中都可以查到 ,这里就不再赘述 。根据公式可知 ,晶振 、鉴相器 、运放 、混频器 、梳状谱发生器为低通型噪声 ,振荡器 、预制电压为高通型噪声 。具体分析如下 :
①对晶振分频后输出噪声 、鉴相器 、运放输出噪声 ,混频环相当于低通滤波器 ,在环路带宽内 , 噪声恶化 20lgA , 在环路带宽外被抑制 。低通滤波器的传递函数为混频环的传递函数 H( S), 其中 A 为混频输出后的分频比 ;
②对梳状谱发生器输出噪声 、混频器输出噪声混频环相当于低通滤波器 ,其传递函数为 H( S), 在环路带宽内 ,噪声不会恶化 ,在环路带宽外被抑制 。这也是混频环能够降低相位噪声的主要原因 。
③对振荡器输出噪声 、预制电压引入的噪声 , 环路相当于高通滤波器 , 其传递函数为 1 -H( S), 在环路带宽内被抑制 , 在环路带宽外 ,噪声保留不变 。由于混频器及运放引入的相噪很小 , 基本上可忽略不计 。从上面分析可以得知 , 环路带宽内的相位噪声主要取决于晶振 、鉴相器本底噪声及梳状谱输出噪声 ,环路带宽外的相位噪声主要取决于振荡器的噪声 。混频环的杂散主要有鉴相频率的泄漏 , 梳状谱输出泄漏以及由于混频器引起的组合干扰问题 。对于鉴相频率的抑制可通过增加辅助 LC 低通滤波器解决 。通过在混频器部分增加射频放大器提高隔离度 ,以及梳状谱输出作为信号端 ,并且输出幅度尽量小 ,混频输出后加强滤波 ,空间合理布局以及加强屏蔽等措施可增加对梳状谱输出泄漏的抑制及组合干扰的抑制 。
根据自动控制理论可知 , 锁相环存在一个是否稳定的问题 。混频环只有合适的稳定余量才能保证整个环路工作稳定可靠 , 并能得到好的频谱曲线 。通过对环路的稳定性分析 ,还可以解决环路设计中的许多问题 。例如当稳定余量不足时 , 环路带宽处就会出现鼓包 , 使输出频谱曲线变差 。判断环路是否稳定有多种方法 ,由于波特准则简单方便 ,所以在锁相环的稳定性分析中多采用波特准则 。相位余量一般取 30° ~ 60° 的范围 。环路稳定性与鉴相频率的抑制二者之间存在矛盾 ,设计时需要折衷考虑 。通过频谱仪对输出进行测试 ,合成器主要技术指为 : 频率范围 4~ 16 GHz ,频率步进 1 MHz,相位噪声小于 -90 dBc/Hz(@ 10 kHz) ,杂波抑制小于 -70 dBc 。
在极高频段内实现宽带的低相噪频率合成有一定的难度 ,通过混频式锁相环技术 , 大大降低了环路内的分频比 ,在理论上保证了低相噪的可能性 。通过采用 YTO 实现了在极高频段内实现了宽带低相位噪声振荡器 ,以及选用超低本底相噪鉴相器及低相噪晶振 ,从而在器件上保证了宽带低相噪频率合成器的实现 。在进行结构及印制板设计时 , 要充分考虑整体的电磁兼容问题 ,才能得到好的杂散指标 。