记 : R 为 曲率半径
以平面曲线为例。作一圆通过平面曲线上的某一点A和邻近的另外两点B1和B2,当B1和B2无限趋近于A点时,此圆的极限位置叫做曲线A点处的曲率圆(即当曲率圆与曲线相切时)。曲率圆的中心和半径分别称为曲线在A点的曲率中心(centre of curvature )和曲率半径(radias of curvature)。曲率半径愈小,表示曲线弯曲愈甚。
曲率圆方程的表达式:(x-α)^2+(y-β)^2=R^2,其中R是曲线y=f(x)在P(x0,y0)点处的曲率半径,圆心(α,β)称为曲线y=f(x)在P(x0,y0)点处的曲率中心,
且α=x0-f'(x0){1+[f'(x0)]^2}/f''(x0),β=y0+{1+[f'(x0)]^2}/f''(x0).