从20世纪70年代环形光纤的概念被提出以来,微结构光纤逐渐走入了人们的研究视野当中,微结构光纤的种类也变得多样化。常用的微结构光纤有三种:
一、多孔微结构光纤
多孔微结构光纤又称为光子晶体光纤(既F),最早于19%年英国Bath大学的首次制造了具有光子晶体包层的光纤。它是在石英光纤中沿轴向均匀排列着空气孔,从光纤端面看,存在周期性的二维结构,如果其中一个孔遭到破坏和缺失,则会出现缺陷,光能够在缺陷内传播。与普通单模光纤不同,PCF是由其中周期性排列空气孔的单一石英材料构成,所以又被称为多孔光纤或微结构光纤。由于PCF的空气孔的排列和大小有很大的控制余地,可以根据需要设计PCF的光传输特性,所以它激起了人们浓厚的兴趣。
PCF横截面具有周期性微孔结构,并且孔的大小与波长同一个数量级,故可通过优化设计微孔大小、填充率以及排列等方式获得一系列"奇异"的光学性质。由于PCF结构的特殊性,它由于具有一系列"奇异,,的光学特性而倍受重视。与常规光纤相比,PcF相对于传统光纤具有独特的优势:全波段单模传输、高非线性、大模场面积、可控色散特性等。基于此,PcF不仅有可能成为比常规光纤更优异的光传输介质,而且还可以用来制作各种前所未有的、功能新奇的光子器件,在频率变换、色散补偿、超连续谱的产生等领域都有着很大的应用前景。因此,具有周期结构的PCF已迅速成为光电子领域的热点。
根据PCF的导光原理,PCF可以分为两类:
(1)光子带隙型光子晶体光纤(PGB一PCF)合理设计包层空气孔结构,可以使得包层沿着光纤横截面上存在着光子禁带。当导波频率在包层禁带范围内时,光在包层不能传播,从而被严格限制在纤芯中传播。纤芯缺陷材料折射率比包层低,一般为空气,想要在包层中形成光子禁带,对空气孔的周期性排列要求非常严格。
(2)全内反射式光子晶体光纤
全内反射式光子晶体光纤其结构与传统光纤类似,不同之处在于这种光纤的包层结构是多孔结构。中心的实心缺陷为纤芯,包层的周期性多孔区域形成一种渐变折射率分布,纤芯与包层之间通过引入空气孔形成了一定的折射率差,使得光在包层区域发生全内反射,从而光可以在纤芯区域传播。
二、Bragg光纤
布拉格光纤(Bragg fiber)是一种一维微结构光纤其纤芯一般为折射率较低的介质(通常是空气),包层是径向折射率一维高低周期性分布的介电结构,也可以看作是多层介质镜,光纤的模式由Bragg反射束缚在芯层中。Bragg光纤的包层区域的高低折射率介质的折射率差一般很大,又被称为全向导波光纤或同轴光纤。
Bragg光纤相对于传统的阶跃光纤和梯度折射率光纤有几个优点:
1.电磁波主要在纤芯的空气区域,因而其传输损耗和材料色散很小;
2.基模场分布圆周方向均匀,传输过程中偏振态不发生变化;
3.可在很宽波长范围内单模工作;
4.通过结构参数设计、介质材料选取、工作波长确定可使零色散波长位于
单模范围,在传输过程中保持脉冲形状不变;
5.弯曲半径到波长数量级时仍保持良好的导光能力等。
不过Bragg光纤由于折射率差很大,非线性效应较高,当传输的激光功率很高时,容易产生非线性,大大影响其作为高功率激光器和放大器性能。
三、瓣形微结构光纤
瓣形微结构光纤又称为瓣形光纤(SCF),是一种新型微结构光纤,最早由V.Rastogi,K.s.chiang等人于2001年提出,并在2004年拉制出了第一根瓣形微结构光纤1281。SCF纤芯为一种高折射率介质,包层为高低折射率介质相互交错周期排列的瓣形分布。
瓣形微结构光纤突出的优点在于具有大的单模尺寸。同光子晶体光纤不同的是,瓣状光纤高低折射率介质的折射率差非常小,非线性系数小,便有效地减小了偏振模色散,适合于高速信号传输。此外,由于其大单模尺寸,在高功率的情况下,单位面积的功率比常规光纤小很多,能够有效遏制非线性效应,减少高功率时光纤端面损伤,因此瓣状光纤在高功率传输、高功率放大器和激光器中有很大的用途。