实施例一
请参阅图1、2所示,本实施例的发动机为四缸柴油发动机,其中图1中示出了一个气缸11的结构,每个气缸11内包括一个活塞5和一个连杆6。活塞5能够垂直往复的在气缸11内运行,活塞5通过连杆12连接到气缸11下部的曲轴13上,即连杆12的小端固定连接在活塞5上,使得活塞5的往复运动通过连杆6变换为曲轴13的旋转。这些零部件的运行全部都是在机体12内运行。
汽缸盖3连接到机体12的上部,汽缸盖3、机体12以及活塞5限定出燃烧室10,喷油器4布置在燃烧室10的上部。燃烧室10的进气门2和排气门1分别连接到发动机的汽缸盖3上。曲轴13的旋转,通过齿轮15的传动带动凸轮轴20和摇臂18,进而控制进气门2和排气门1的开关。进气管16通过进气道7连接在进气门2上,排气管19通过排气道8连接在排气门1上。用于燃料喷射的喷油器4设置在燃烧室10的上方,喷油器4是由喷油泵(未画出)控制压力,喷射燃料到燃烧室10中。喷射出的柴油与进气混合形成混合气,曲轴13转动,带动活塞5上行,压燃混合气,燃烧的能量带动活塞5下行,进而带动曲轴13旋转。在这些过程中,由于很多零部件需要机油冷却,而且机油受热挥发,与活塞5的窜气一起形成了大量的油气混合气体,存在与曲轴箱(由机体12和油底壳14等组成)中,最终通过汽缸盖罩17排到大气中。
上述发动机的运行状态由ECU(电子控制单元,未画出)控制。ECU基于来自诸如水温传感器、空气流量计、发动机转速传感器、凸轮位置传感器和EGR位置控制传感器的输出,控制诸如轨压、喷油器4等部件来执行发动机的各种控制。其中曲轴13一般通过铸造球铁,后进行加工形成。如图1所示,连杆6的大端连接到曲轴13的连杆轴颈22上。同时参阅图3所示,所述曲轴13包括主轴颈21、连杆轴颈22和平衡块23,主轴颈21和连杆轴颈22通过曲柄臂24交错连接,其中最内端和最外端的连杆轴颈22的朝向一致,中间的连杆轴颈22的朝向一致,每个连杆轴颈22的其中一端的曲柄臂24上远离连杆轴颈22的位置设置有平衡块23,因此,最内端和最外端的平衡块23的朝向一致,中间的平衡块23的朝向一致,所述曲轴13的主轴颈21固定在机体12的主轴承孔内,机体12的主轴承孔与曲轴13的主轴颈21同轴线,连杆轴颈22的轴线与主轴颈21的轴线实质上是平行的。本实施例的发动机为四缸柴油发动机,因此图3中所示的连杆轴颈22有4档,主轴颈21有5档,平衡块23有4块。上面所描述的发动机和其中曲轴的构造为2015年10月30日前所有的一般通用的发动机和曲轴的构造,《用于发动机的曲轴以及使用该曲轴的发动机》的创新点在于对截至2015年10月30日已有发动机和的曲轴13结构的改进,从而实现降低机油消耗量,减少污染物排放量的效果。当然,这种曲轴13的改进结构,应用于其他结构的发动机上时,具有一样的降低机油消耗量,减少污染物排放量的效果。同时参阅图4至图7所示,下面对曲轴13的形状进行详细的描述。在下面的描述中,为了描述的简明,当在图4的仰视图中观察曲轴13时,沿曲轴主轴颈21方向为“X方向”,而垂直于主轴颈21的垂直方向称为“Y方向”。另外,见图3,沿平衡块的方向,且与主轴颈垂直的方向为“Z方向”。图5是图3中的线B-B的剖视图,图6是图4中的线C-C的剖视图。《用于发动机的曲轴以及使用该曲轴的发动机》的改进点在于,在每个平衡块23的圆周上设置有贯穿平衡块23的通道25,在每个平衡块23的外端部设置有若干个连通通道25的油道,《用于发动机的曲轴以及使用该曲轴的发动机》实施例中,设置了3个油道26、27、28。
下面对曲轴13的作用过程进行详细的描述。首先曲轴13旋转以后,在曲轴箱(由机体12和油底壳14等组成)内存在大量的油气混合气体。从通道入口24处,会进入大量的混合气体。原因有以下两点:一:通道入口24处为迎气面,压力大,通道出口29为背气面,压力小;二:油道26、27、28和通道出口29的面积之和大于油道进口24,行程负压,抽吸效应。
当油气混合气体由通道进口24进入通道25后,高速旋转时的离心力,会使大的油滴紧靠在通道25的外壁上,会在第一个油道26处甩出油道26,被甩到油底壳14或者机体12上面,最终回到油底壳14,经过第一次分离后,油气混合气体会进一步的分离,然后通过第二、第三个油道27、28,达到油气分离的目的。
如上所述,根据依照所述实施例的曲轴13,可以利用燃烧时曲轴13的转动,将曲轴箱内的油气混合气分离。结果证明,油气分离效率提高,机油消耗量大幅下降,大幅改善了污染排放,并且能够降低曲轴自重,减小摩擦损失,改善了燃料消耗率。
下面对所实施的确认上述实施例的效果的实验以及所述实验的结果进行描述。在所述的实验中,具有通道和油道的曲轴13与不具有通道和油道的曲轴分别被装配到发动机(直列四缸柴油发动机)中,通过24小时机油耗试验(实验1)和燃油消耗对比实验(实验2)。图8示出了实验1的结果。图9示出了实验2的结果如图8所示,具有根据《用于发动机的曲轴以及使用该曲轴的发动机》的通道和油道的曲轴13的发动机实现了比装配常规曲轴的发动机24小时机油消耗量节省了60%,大幅降低了污染物排量。
如图9所示,具有根据《用于发动机的曲轴以及使用该曲轴的发动机》的通道和油道的曲轴13的发动机,在保持同样功率的情况下,实现了比装配常规曲轴的发动机的24小时的燃油消耗量减少了9千克,燃油消耗率降低了1%,对能源的节约有着积极的意义。作为优化的结构,通道25的通道入口24处有铸造圆角,利于气体导向作用。而更进一步的优化,在通道25与每一个油道的相通处,有光滑过渡圆角,利于油滴流通。
本实施例中,在每个平衡块的
该实施例中,所述的通道25是圆弧形状,且与曲轴13的主轴颈21同轴,油道26、27、28的延长线通过主轴颈21的轴线。
该实施例中,所述的通道25包括相邻的两个朝向一致的平衡块23内的通道25和另外两个相邻的朝向一致的平衡块23内的通道25。并且作为优化的技术方案,每个平衡块23上的油道26、27、28与通道25过渡处的半径尺寸被设定为逐渐增大,以靠近转向末端的内径最大,即距离通道入口24越远,油道的尺寸越大,油道28与通道25的过渡处的半径比油道27与通道25的过渡处的半径大,油道27与通道25的过渡处的半径比油道26与通道25的过渡处的半径大。并且,该结构中,作为优化的实施方案,所述的通道25在所述的旋转方向上,保持内径恒定。
实施例二
请参阅图10所示,该实施例与实施例一的区别在于曲轴13的油道的结构的不同,其他结构均与实施例一完全相同。
在图10所示的改进例中,油道用260、270、280标示,该实施例更改了油道的260、270、280走向和形状,油道260、270、280的中心线与通道25的中心线相切,并且每一个油道与通道25的相接处的倒角在混合气进气侧较大,背气侧较小。
该实施例中,每个平衡块23上的油道260、270、280与通道25过渡处的半径尺寸被设定为逐渐增大,以靠近转向末端的内径最大,即距离通道入口24越远,油道的尺寸越大,油道280与通道25的过渡处的半径比油道270与通道25的过渡处的半径大,油道270与通道25的过渡处的半径比油道260与通道25的过渡处的半径大。
实施例三
请参阅图11所示,该实施例与实施例一的区别在于曲轴13的通道和油道的结构的不同,其他结构均与实施例一完全相同。
在图11所示的改进例中,通道用25’标示,油道用26’、27’、28’标示,该实施例更改了通道25’和油道26’的走向和形状,通道25’的轴线呈直线,且直线型通道25’的轴线的方向是与连杆轴颈22和主轴颈21的轴心的连线方向垂直。油道26’的延长线通过主轴颈21的轴线。图11中只给出了一个油道,本领域人员可以理解,如同实施例一和实施例二相同,油道的数量设置为至少一个。在以上所述的实施例和改进例中,《用于发动机的曲轴以及使用该曲轴的发动机》应用于工程机械的多缸柴油机的曲轴。