大多数微波管是在第二次世界大战以前发明的。由于雷达应用的需要,2种类型微波管,即磁控管和反射速调管,在第二次世界大战期间得到了大力发展。在第二次世界大战期间和随后的年代,发明了多种类型和结构的微波管。由于效率和增益低、结构复杂等原因,其中大多数没有得到实际应用。5种类型微波管占了主导地位,其中4种是普通微波管,第5种是回旋管。以下5种类型的微波管:
(1)速调管;
(2)行波管;
(3)磁控管;
(4)正交场放大器;
(5)回旋管。
上述5种类型的微波管可以分为下图3所示的3种类别,即线性注管、正交场管和快波管。如果考虑微波管的结构,以及其中的电场和磁场,则上述划分的缘由就十分清楚了。
图1-4和图1-5表示速调管和行波管的基本结构。在这2种管子中,由电子枪形成的电子注线性地通过高频电路到达收集极。在速调管中,高频电路是由若干个谐振腔组成的,谐振腔间没有电磁耦合。高频输入信号对电子注中的电子加速或减速。在电子注漂移过程中,较快的电子赶上较慢的电子,形成了电子群聚,电子注中的高频电流随电子注向前移动而增长。高频电流首先耦合到中间腔(图1-4中只表示出1个中间腔),然后耦合到输出腔。在每一个中间腔,高频电流感应出信号,转而产生增强电子注群聚过程的高频电场。最后,强的高频电流耦合到输出腔,产生高频输出功率。速调管的增益很高,可达60dB或更高,其带宽为百分之几至大约10%,其输出功率电平可达几十MW或更高。
在行波管中,高频电路是连续的,信号可以沿高频电路行进,很像它在传输线中传输一样。高频电路的设计使信号的速度接近通过电路的电子注速度。如图1-5所示,设计电路使信号在电路中产生的电场伸人到电子注中,高频电场使一些电子加速,另外一些电子减速,从而形成电子群聚。当这些电子群聚通过附近的电路时,在电路上感应高频电流,并使电路上的高频场幅度增加。增强的高频电场转而增加电子注的群聚作用,随着电子群聚和电路中高频场沿高频电路以相同速度移动时,电子注中的群聚作用增强。当电子群聚变得更强时,电子注中的高频电流和电路中的高频场将变得更大。最终,被放大的信号从电路中耦合出去。通常,行波管的增益在30dB~ 50dB范围,带宽达20%到超过2个倍频程。对于极宽频带行波管,其输出功率电平为数十瓦,对于窄频带行波管,其输出功率电平为数百kW至MW。
图1-6和图1-7表示磁控管和正交场放大器的基本结构。在这些器件中,阴极是位于中心的圆柱发射体。一般,电子流是沿径向向外移动到作为阳极的高频电路。由于外加磁场垂直于阴极一阳极间电场和电子流方向,因此,电子被迫环绕阴极运动。当高频场存在时,电子群聚,形成轮辐结构。
磁控管是振荡器,其高频电路是由谐振腔组成的。谐振腔的排列使每一个谐振腔产生的高频磁场与相邻谐振腔耦合,在理想情况下,整个谐振腔结构谐振在一个相同频率,相邻谐振腔的高频电场的相位相差180°。高频场振荡时,在谐振腔间隙的高频场图像环绕阴极旋转。如果环绕阴极的电子轮辐与阳极上的旋转场同步,那么,轮辐可以在到达每一个谐振腔间隙时,在谐振腔中感应高频电流,使振荡增强。磁控管的输出功率可达数MW,报导的效率高达88%。
正交场放大器CFA)的工作原理(见图1-7)与行波管相似,设计高频电路使沿电路行进的信号与随之而来的电子同步。在行波管中,电子群聚是沿着行波移动方向形成的,在CFA中,形成电子轮辐,轮辐环绕阴极,且与电路中行进的波同步。电路波的电场增强了轮辐的群聚作用,由轮辐在高频电路上感应的电流增强了电场。电路上的波从输入到输出行进时增长。在某些CFAs中,设计电路使返波作用发生,并产生放大。通常,CFAs的增益小于20dB,而输出功率可能达到几十MW。