在国外国内,快速连接器生产厂家较多,其结构和材质上也形成了各自的特点 。
结构上分类:机械接续型和热熔型
机械接续型又分:直通型和预埋型 。
热熔型光纤现场连接器:实际上一样是光纤熔接,只不过熔接点在连接器尾端内部,相当于热熔把尾纤的尾缆给省掉了,这样做的好处是熔接好后,不需作额外保护。实际上就是将光缆与尾纤分别开剥后通过熔接机热熔对接,对接完后需要使用熔接盘进行固定保护;
直通型:光缆开剥、切割后直接从尾端穿到连接器顶端,连接器内部无连接点。
预埋型:接头插芯内预埋一段光纤,光缆开剥、切割后与预埋光纤在连接器内部v槽内对接,V槽内填充有匹配液。
热熔型操作缺点
但就其操作来讲,一样要使用熔接机,一样是有源热熔,和普通热熔实际上本质上并无区别。热熔接所具备的缺点,它同样存在,因此该类方式并未被广泛采用。
针对当前FTTH建设终端接续而言,热熔接存在一定的局限性:
1、熔接机施工需要操作平台,空间受限;
2、熔接机价格贵,施工成本高;
3、有源施工,电池续航能力有限;
4、热熔设备体积大、携带不便;
5、针对FTTH终端多点零散接续耗时长。
直通型结构缺点
第一:对切割端面依赖性强;因为直通型结构是将光纤从连接器尾部直接穿到连接器顶端,这就意味着光纤切割端面就是连接器端面,如果光纤切割端面不平整,势必会影响连接器性能指标,尤其是回波损耗更无保障;传统的尾纤、跳线在生产时为保证其回波指标,都是要经过研磨,根据插芯和研磨工艺的不同,对端面进行区分,分为PC、UPC、APC,而直通型结构只是手工切割端面,并无研磨,更谈不上PC、UPC、APC,如果要确保质量,只能依靠操作人员的切割水平,因此其要求操作人员具备较强的光纤施工能力和经验。
第二,对陶瓷插芯与光纤直径匹配要求严格;同样的也是由于直通型结构是将光纤从连接器尾部直接穿到连接器顶端,这就要求陶瓷插芯内孔径要大于等于光纤直径,否则穿不进去。但是又不能太大,太大则为导致光纤在陶瓷插芯内晃动,导致偏芯。从而影响连接器性能。
第三,对切割长度、夹持件强度要求严格;切割所留光纤如果长了或者短了致使在穿纤的时候穿过头或没穿到头,都会导致衰减大。另外即使长度到位,对于后方固定光纤光缆的夹持件强度要求也很高;因为施工以及用户在使用过程中的拉拽,以及随着使用年限的增加,材料的形变都可能引起光纤光缆与连接器发生相对位移。实验表明在凸出或凹陷超过50nm的情况下,连接器的损耗就会变得很大。
当然直通型结构也有其优点,就是其连接器本身结构简单,工厂生产较为容易,因此造价低。
预埋纤结构优点
1、陶瓷插芯内预埋光纤顶端进行了研磨,回波损耗有保障;
2、内部对接处填充匹配液,不过分依赖光纤端面切割;
3、预置光纤通过注胶固化,不会出现晃动、偏芯的情况;