加氢变压器油的研制改变了传统炼油模式。通过采用全加氢工艺,从非环烷基原油生产API n类基础油,也可生产API m类基础油。对应的工艺路线为“加氢裂化一加氢异构脱蜡一加氢补充精制”。
加氢裂化主要发生加氢脱硫、加氢脱氮、加氢脱氧以及烯烃和芳烃的加氢饱和反应,此外还有少量的开环、断链和缩合反应,从而改善基础油的粘温性能以及有效降低基础油的硫、氮、氧等杂质含量。加氢异构脱蜡是有选择性地将原料中的正构烷烃和少许带侧链的烷烃转化成理想的异构烷烃,从而改善基础油的倾点。加氢补充精制可进一步降低基础油中的硫、氮、氧等杂质含量,并通过少量的芳烃饱和,从而改善基础油的光安定性和氧化安定性 。
加氢裂化是指通过加氢反应使原料中的长链分子变短的一些加氢过程。在具有裂化和加氢两种功能的催化剂的作用下,非烃类化合物进行加氢转化,烷烃、烯烃进行裂化,多环化合物通过开环等反应最终转化为单环化合物.
原油中烷烃在加氢裂化过程中可通过p键断裂和异构化反应生成短链烷烃,降低原油的勃度。其反应式如下:
在加氢裂化条件下,多环芳烃的反应十分复杂,所发生的反应有逐步加氢、开环(异构)、脱烷基等一系列平行和顺次反应。
在加氢裂化过程中,还发生了加氢脱硫、加氢脱氮、加氢脱氧反应,从而降低变压器油的硫、氮、氧含量。通过以下反应式举例简示。
脱蜡是变压器油基础油炼制过程中的一个重要环节,目的是从润滑油馏分中,分离出在低温下易从油中析出,且熔点较高的结晶状烃类,以降低油品的倾点,提高油品在低温使用条件下的流动性。
异构脱蜡的原理是,在由具有加氢作用的金属组分和择形选择性的沸石(酸性)载体组成的特定分子筛催化剂的催化下,有选择性地将原料中的正构烷烃和少许带侧链的烷烃转化成理想的异构烷烃和环烷烃。通过上述的异构化反应,将高倾点的正构烷烃转化成低倾点的、低温流动性较好的支链烷烃,从而改善基础油的倾点。为保证产品有合适的倾点及收率,在异构脱蜡的工艺中,应保持催化剂的加氢和酸性中心的平衡。如果酸性功能过强,则生成的异构烯烃会由于裂化反应而导致产品收率下降;如果加氢功能过强,则在加氢中心上生成的烯烃来不及转移到酸性中心上异构,就已饱和成烷烃,不能有效地降凝。
异构脱蜡的优点是,当基础油的倾点相同时,收率高于溶剂脱蜡,同时突破了受原油种类限制的瓶颈,能够以非环烷基原油为原料,炼制出性能优良的基础油,大幅度降低了变压器油的倾点。同催化脱蜡比,异构脱蜡副产品少,润滑油收率和勃度指数高 。
加氢补充精制是指在保持油品分子骨架结构不发生变化或者变化很小的情况下,将杂质脱除,以达到改善油品质量为目的的加氢反应。加氢补充精制可进一步降低基础油中的硫、氮、氧等杂质含量,并通过少量的芳烃饱和,从而改善基础油的光安定性和氧化安定性。
通过加氢工艺研制加氢基础油后,还需添加合适的抗氧化剂和金属钝化剂,这是制取加氢变压器油的最后工序。