由固体表面的低温吸附而产生的气体凝结是由于气体粒子同固体分子的相互作用。气体因范德瓦尔力而被凝结在吸附剂上,这些用作吸附剂的材料与待吸附气体相比,具有较高的特征温度.例如有较高熔点。此外,吸附剂粒子和气体粒子之间的结合力应大于凝结状态的气体分子之间的结合力。由此得出:吸附平衡处在低于饱和蒸气压的压强下。因此,在未饱和状态下,在比冷凝所需的温度高得多的温度下,气体也可通过吸附而被凝结。这对抽除氦、氢和氖这类难于冷凝的气体具有重大意义。
由于在达到一定的表面覆盖后吸附剂饱和,所以在实际应用时仅需考虑那些具有较大比吸附能力的可制备的纯吸附质。
在物理吸附过程中,吸附是放热的。因此,吸附量随温度的升高而降低,这是热力学的必然结果。但当气体吸附质分子(如N2,Ar,CO等)的大小与吸附剂的孔径接近时,温度对吸附量的影响就会出现特殊的情况,如图1所示,这是O2,N2,Ar,CO等气体在,其中对于O2的吸附量是随温度的下降而增加,在0℃时只有微量的吸附,而在-196℃时吸附量可达130 mL·g-1(18.6%),对于N2,Ar,CO等气体在0℃至-80℃之间吸附量随温度的降低而增加,而在-80~-196℃的范围内吸附量随温度的降低而减小。也就是说,吸附量在一80℃左右有一个极大值。这是由于N2,Ar,CO等气体分子和4A型沸石的孔径很接近,在很低的温度下,它们的活化能很低,而且沸石的孔径发生收缩,从而增加了这些分子在晶孔中扩散的困难。因此,温度降低反而使吸附量下降。由此可以选择一个较低的温度使O2同其它气体分离。
再如在低温下分离氦和氖,这两种气体在5A型和13X型分子筛上的吸附等温线(-196℃),如图2所示。
如果选用13X型分子筛作吸附剂,当吸附温度在-196℃时,其分离系数a=5.3,而且氖的等温线呈线性。在适当压力下进行吸附分离可以得到纯度为99.5%的氖,回收率大于98%。