自然界中有数以万计的微藻资源,它们分布于地球的每个角落,从陆地到海洋,从沙漠到草原,从淡水到温泉,都有微藻的存在和繁衍,它们能够适应不同的温度、湿度和营养生境,正因如此,微藻在种质、生态分布、遗传信息、生化合成、代谢途径等方面具有出多样性、复杂性和特殊性,进一步决定了其且在的营养和药学价值,人类可以从中开发出大量结构特异的高附加值生物活性成分、微藻蛋白、生物柴油或水产饵料等产品。
但是,自然界中存在的微藻高度混杂和分散,并没有大量单一种类的微藻可以直接收集,因此,开发微藻资源需要通过光生物反应器来养殖。
截至2009年11月,国际上,微藻规模化人工养殖采用的光生物反应器有:管道式光生物反应器、平板式光生物反应器、柱状式光生物反应器、半球状式光生物反应器、幕布式光生物反应器、开放式浅水层光生物反应器等等,但是以往的养殖方式只关注光生物反应器的形状、结构、体积、表面积、体积与表面积的比例,光照、温度、pH值等培养参数的控制,很少关注给光生物反应器供气的系统,因此,造成供气系统与光生物反应器间不匹配,消耗大量的电力、管材,气体供应量不足,气体的利用率低,微藻细胞光合作用效率低,有机物积累缓慢,呼吸速率低,藻体内能量得不到充分释放,藻细胞生长繁殖速率低,生物量增值慢,生产周期长,微藻养殖规模发展慢。
微藻的养殖以实现经济价值为目的,生产实践中在不增加反应器数量、体积、供气系统配置的前提下,提高供气气体的流量,增加气体的利用率,增大单位体积内微藻的生物量,可以缩短培养的时间,节约生产成本,提升微藻细胞培养效率,将成为微藻生物技术规模化发展中的关键核心技术问题。