造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

气体放电基本过程

2022/07/15270 作者:佚名
导读:气体放电激发 现象 荷能电子碰撞气体分子时,有时能导致原子外壳层电子由原来能级跃迁到较高能级。这个现象,称为激发;被激发的原子,称为受激原子。要激发一个原子,使其从能级为E1的状态跃迁到能级为Em的状态,就必须给予(Em-E1)的能量;这个能量所相应的电位差设为eVe,则有eVe=Em-E1 电位Ve称为激发电位。实际上,即使电子能量等于或高于激发能量,碰撞未必都能引起激发,而是仅有一部分能引起激

气体放电激发

现象

荷能电子碰撞气体分子时,有时能导致原子外壳层电子由原来能级跃迁到较高能级。这个现象,称为激发;被激发的原子,称为受激原子。要激发一个原子,使其从能级为E1的状态跃迁到能级为Em的状态,就必须给予(Em-E1)的能量;这个能量所相应的电位差设为eVe,则有eVe=Em-E1

电位Ve称为激发电位。实际上,即使电子能量等于或高于激发能量,碰撞未必都能引起激发,而是仅有一部分能引起激发。引起激发的碰撞数与碰撞总数之比,称为碰撞几率。

原因

受激发后的原子停留在激发状态的时间很短暂(约为10-6秒),便从能量为Em的状态回复到能量为E1的正常状态,并辐射出能量为hv(h为普朗克常数;v为辐射频率)的光量子。气体放电时伴随有发光现象,主要就是由于这个原因。 在某些情况下,受激原子不能以辐射光量子的形式自发回到正常状态,这时便称为处于亚稳状态,处于亚稳状态的原子称为亚稳原子。亚稳原子可以借助两种过程回复到正常状态:一是由电子再次碰撞或吸收相应的光量子,升到更高的能级,然后从这个能级辐射出光量子而回到常态。另一是通过与电子碰撞将能量转化为电子的动能,它本身回到常态。亚稳原子的寿命约为10-4~10-2秒;由于它寿命较长,在放电中常常起重要的作用。

基态时

当受激原子尚未回到基态时,如受到电子的再次碰撞就可能转入更高的激发态。这种由多次碰撞往高能级激发的现象称为累积(逐次)激发。

气体放电电离

电子与原子碰撞时,若电子能量足够高,还会导致原子外壳层电子的脱落,使原子成为带正电荷的离子。与激发的情况类似,电子的动能必须达到或大于某一数值eVi,碰撞才能导致电离。Vi称为电离电位,其大小视气体种类而定。同样,即使能量高于电离能,碰撞也仅有一部分能引起电离。引起电离的碰撞次数与总碰撞次数之比,称为电离几率。如果受激原子由于电子再次碰撞而电离、则称为累积(逐次)电离。

在气体放电中还有一类重要的电离过程,即亚稳原子碰撞中性原子使后者电离的过程。这种过程只有在亚稳原子的亚稳电位高于中性原子的电离电位(如氖的亚稳原子碰撞氩原子)时才可能出现。这个过程称为潘宁效应。潘宁效应在亚稳原子的激发能比较接近中性分子的电离能时最为显著,因为前者寿命较长,可以有更多的几率与中性分子碰撞电离。

方式

如果将一切电离因素都去掉,则已电离的气体,会逐渐恢复为中性气体,这称为消电离。消电离的方式有三种:①电子先与中性原子结合成为负离子,然后负离子与正离子碰撞,复合成为两个中性原子。②电子和正离子分别向器壁扩散并附于其上,复合后变为中性原子离去。③电子与正离子直接复合。

气体放电迁移

在电场作用下,带电粒子在气体中运动时,一方面沿电力线方向运动,不断获得能量;一方面与气体分子碰撞,作无规则的热运动,不断损失能量。经若干次加速碰撞后,它们便达到等速运动状态,这时其平均速度u与电场强度E成正比 u=KE

系数K称为电子(离子)迁移率。对于离子,K是一个常数;对于电子,它并不是一个常数,而与电场强度E有关。

气体放电扩散

扩散现象复杂

当带电粒子在气体中的分布不均匀时,就出现沿浓度递减方向的运动,这称为扩散。带电粒子的扩散类似于气体的扩散,也有自扩散和互扩散两种。扩散现象用扩散系数来描述,它是带电粒子扩散能力的一种量度。 多种带电粒子同时存在于气体时,扩散现象变得复杂。其中特别重要的一种气体放电 情况是电子、正离子浓度相等(即等离子体)的情况,这时出现所谓双极性扩散。这是两种异号带电粒子相互牵制的扩散,其基本特征是:电子由于质量小、扩散得较快;离子由于质量大,扩散得较慢。结果电子走在前方,于是两种电荷间出现一个电场(约束电场),这电场牵引正离子使它跟上去。两种带电粒子的扩散速率始终一致,但电子总是在前方,离子则在其后。

电子运动速度快

在管壁附近,双极性扩散受到管壁的影响。此时,电子运动速度快,先附于管壁,使管壁带负电位。负电位阻止后来电子的抵达,但吸引正离子,在其附近形成正电荷鞘层。在鞘层中,电子的浓度随着接近管壁而递减,最终自动调整到每秒飞上管壁的电子数恰好等于飞上的正离子数。

气体放电的重要形式  最早研究的气体放电形式是低气压(1~100帕)直流放电,即在气体中置入两个电极,通以直流电压而得到的放电。为使电流不致过大,回路中串联一个电阻(即限流电阻)。若将电源电压逐渐提高,通过气体的电流就随之增大。当极间电压提高到us时,电流突然急剧增加,放电变为明亮的形式,这称为着火,也称为击穿。着火之后,放电转入自持放电,在开始一段(SB段)为正常辉光放电,极间电压比着火前低,且其数值不随电流增大而变化,呈现恒电压特性。当电流增大到某一数值(B点)时,极间电压又随电流而增大,这一段(BE段)属异常辉光放电。电流增大到E点时就转入电弧放电,此时极间电压将随电流增大而下降,呈现出负阻特性(ECDF段)。气体放电

气体放电的着火是一种突变现象。闸流管、计数管、气体放电开关管等器件便利用这种突变特性。利用正常辉光放电的恒电压特性即可制成气体放电稳压管。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读