点位控制系统实际上也是一种位置伺服系统,它们的基本结构与组成基本上是相同的,只不过侧重点不同而已,它们的控制复杂程度也各有千秋。一般来讲位置伺服系统强调稳定性,快速无超调,跟随误差小,调速范围宽,高精度高动态特性等,点位控制系统要求高的定位精度和定位时间等,对于有轨迹要求的点位控制系统几乎包括位置伺服系统的所有要求。
点位控制系统按反馈方式来分,可以分为闭环系统,半闭环系统于开环系统。
闭环控制系统将位置检测器安装在最终输出轴上(或者平台),因此可以获得最终端的精确位置信息,通过闭环反馈实现高精度的定位。如果机械传动系统的刚度较大或者惯量非常小,也就是机械传动系统的固有频率远大于电机系统的固有频率,则定位系统的频率特性就取决于速度环的频率特性,则定位系统可以化简为二阶系统。
对于不同特性和要求的定位系统,应使用不同的情况进行简化,以减少设计的复杂性。从理论上来讲,闭环系统的思想方法是最理想的,它不仅可以消除电气控制系统的误差,而且可以消除传动链的各种误差。但是这种控制思想实现起来是有困难的,主要是电气与机械的祸合中出现很多非线性因素,比如传动间隙,摩擦特性的非线性,传动刚度不固定等,致使系统出现共振,爬行等不稳定因素以及其它一些未知因素,另外负载变化也会对系统的摩擦特性,机械惯量等产生影响,给系统的整定造成困难。仅有少数高精度坐标镗床,超精度车床,超精度铣床应用闭环控制,一般定位精度可达
半闭环系统的特点是并没有把机械传动系统包括在环内,其位置测量元件一般安装电动机的端轴。半闭环系统应用广泛,一般说的闭环系统往往指的就是这种系统。其反馈环节并没有把机械传动系统包括在里面,这样避免了很多非线性因素的引入,系统容易实现,但是它不能补偿环外传动系统的传动误差,也不能补偿间隙误差等因素,因此控制精度也相应降低。为了提高控制精度,也可以采取一定的补偿措施,比如事先计算出传动误差和反转间隙等因素,在控制系统中加进这些误差以提高精度,但是传动误差,反转间隙等会随着摩擦,安装位置,刚度的变化而变化,另外温度,润滑,负载等变化也会随着发生变化,因此提高精度能力有限。
这种控制系统是比较原始的系统,由于其控制方法简单,系统成本低,技术成熟,因此引用也非常广泛。这种系统的特点是没有位置检测装置,精度的实现靠控制器,执行电机与传动系统的性能来保证,最典型的系统就是采用步进电机的位置伺服系统。
这类系统在定位要求相对较高的情况下,往往采用单向运行方式,以克服反转间隙的影响,或者要求反转的情况下可以采用各种齿轮传动的消隙装置,但是都有一定的局限性,比如增加结构复杂性,本身调整比较困难,大多数消隙装置不能消除变隙回差,另外还增加摩擦,加快磨损等不利影响。对有些负载较大,惯量较大而又有很大的加减速时,传动链的刚度会对定位精度产生很大影响,考虑传动链刚度和阻尼的情况下,传动链一般为一个或者近似的二阶振荡环节。对于这样的传动链,无论是电机启动或者停止时的冲击还是电机恒值(阶跃函数)输入,都会引起一定振荡现象,因此必须小心处理。