造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

断裂韧性研究进展

2022/07/15111 作者:佚名
导读:随着概率断裂力学工程应用的逐步深入,材料断裂韧性分散性问题,已成为影响含缺陷结构概率安全评定的关键因素之一。合理解决材料断裂韧性分散性是一个十分复杂的问题。一方面由于冶金过程等方面的偏差,造成材料断裂韧性的分散性;另一方面由于试样几何尺寸、裂纹长度测量等试验误差,亦会导致测试结果的不确定性,还有不同测试规范和标准对测试数据的处理也会导致测试结果的不确定性。若缺陷位于焊接部位,影响因素将更加复杂。除

随着概率断裂力学工程应用的逐步深入,材料断裂韧性分散性问题,已成为影响含缺陷结构概率安全评定的关键因素之一。合理解决材料断裂韧性分散性是一个十分复杂的问题。一方面由于冶金过程等方面的偏差,造成材料断裂韧性的分散性;另一方面由于试样几何尺寸、裂纹长度测量等试验误差,亦会导致测试结果的不确定性,还有不同测试规范和标准对测试数据的处理也会导致测试结果的不确定性。若缺陷位于焊接部位,影响因素将更加复杂。除上述原因外,还会有诸如焊接上艺、焊材、以及不同操作人员及焊后热处理等因素导致断裂韧性测试结果分散性更加严重。尽管分析和解决其分散性问题如此复杂,十分困难,然而,在对含缺陷焊接结构(尤其是工业锅炉、压力容器和管道)进行安全评定时,重点就是焊接接头区而不是母材。如何处理断裂韧性的分散性问题已成为工程界不可回避的问题,也是概率安全评定应解决的基本问题之—。

对材料断裂韧性分散性规律的研究,在理论和实践上均已取得较大进展。

Hauge和Thualow分别采用Weibull分布、LogNormal分布、Slather模型以及Neville模型,对两组CTOD数据(86个母材和16个焊材)进行了统计分析,其主要结论如下:

①两组CTOD数据并非服从形状参数为2的Weibull分布(或Slather模型);双参数Weibull分布、LogNormal分布和Neville分布都适宜拟合这些数据。

②90%置信限的中位期望值可较好地由LogNormal分布得到;对于只有三个子样时,能较好地等效于三个值十取最小值的方法;对大子样,LogNormal吻合更好。

③对于小子样,LogNormal分布提供最为可靠的估计,Weibull分布和Neville模型在于样为3和5时由于数据不够,难以估计分布参数值。

④数值模拟结果及拟合结果均表明LogNormal分布无论对太子样还是小于样,拟合精度足够,不是特别保守。

Mimura等对由于材料不均匀而引起断裂韧性的分散性做了分析与试验研究。经过从同一块板上取样的CharpyV型试块试验分析,提出了区别材料不均匀性导致的分散性与测试中导致的分散性的方法。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读