第一类外尔半金属
1929 年,物理学家Hermann Weyl 理论预言了一种质量为零的相对论性费米子,称为“外尔费米子”。独特的是,这种费米子具有两种不同的类型,可以用“手征”来表示,其中一种费米子的自旋和动量方向平行,而另一种费米子相反,称它们分别具有“右手”和“左手”手征,如同人的左手和右手一样,具有镜像对称性。通常人们研究的费米子“右手”和“左手”手征分量是无法分离的,因此如果在实验上能够实现两种外尔费米子的分离,将可能观测到新的物理现象,也将为探索“手征电子学”和发展下一代低功耗信息器件提供新的契机。
最初人们一直在高能物理中寻找外尔费米子,中微子曾经被认为是外尔费米子,但后来发现中微子有质量,寻找外尔费米子的道路变得更加坎坷。理论预言近80年后,凝聚态物理中拓扑能带理论的发展给人们带来了新的希望。在固体材料中,电子的运动会受到晶格周期势场的影响,同时受到其他电子的相互作用。而在某些特殊晶格中,电子的集体行为可以用一种新的“准粒子”来描述。随后的研究发现,在一些破坏空间或时间反演对称性的固体材料中,如果能带中导带和价带相交于一点,那么在交点处满足线性色散关系的低能准粒子可以等效地对应于高能物理中的无质量外尔费米子。2011 年,南京大学万贤刚教授首次预言了第一种存在外尔费米子的固体材料Y2Ir2O7,该材料具有磁性,但由于磁性会影响实验上对外尔点的观测,不容易证实外尔费米子的存在。2015年,中国科学院物理研究所以及Princeton大学的物理学家们终于在破坏空间反演对称性的固体材料TaAs 中发现了外尔费米子,具有外尔费米子的固体材料称为外尔半金属。自此,越来越多的理论和实验工作迅速开展起来。以TaAs 为代表的外尔半金属中,外尔点附近的能带是直立的“X”型锥体(图3),费米子满足洛伦兹对称性,称为“第一类外尔费米子”。
圆锥的顶点(称为Weyl点)就代表Weyl费米子。不同手性的Weyl费米子只能同时产生或者消失。在这个点的附近,材料体内作为准粒子的电子具有与无质量Weyl费米子相同的运动特性。Weyl点的另一个意义是,它其实是动量空间的“时空奇点”。我们可以把它形象地类比于时空隧道,就像物理中所描述的虫洞。这些特殊的奇点对材料表面上电子有很强的影响,比如当表面电子沿某些特定方向运动并达到特定速度时,会突然从表面消失,进入材料体内,并立刻从材料的另一个表面穿出,就像是一艘经历了“虫洞”旅行的宇宙飞船。更进一步,不同手性的Weyl点会在表面的电子态中形成一些非闭合的曲线,使Weyl点彼此互相连接,这就是费米弧。由于这类半金属是受到拓扑保护的,所以这个费米弧也叫拓扑费米弧。不仅如此,Weyl半金属还有另一个令人兴奋的性质:负磁阻效应。当外加平行的电场和磁场时,动量空间中左旋的Weyl点和右旋Weyl点会分离开,而Weyl费米子可以从右旋的Weyl点出发被发射到左旋的Weyl点去,就好比金属中的电子产生定向运动时会有电流。随着磁场的增加,越来越多的Weyl费米子参与到输运中,使得材料的电阻降低。磁场在这里犹如水泵般将电子“泵”出来,实际中产生的效应就是“负磁阻”效应 。
第二类外尔半金属
第二类外尔半金属是外尔半金属概念的推广,其特征是在外尔点附近的狄拉克锥是倾斜的,因此相应的电子色散关系在外尔点附近不满足洛伦茨变换对称性。理论上预言第二类外尔半金属有二个实验特征:(1)外尔点附近倾斜的电子色散关系;(2) 各向异性的负磁阻,即在ab-面仅有一个方向上存在由于ABJ-效应导致的负磁阻。WTe2是第一个理论预言的第二类外尔半金属材料。
由于WTe2的外尔点高于费米能级60 meV,因此需要通过一定方法提高费米能才能在输运实验中观测到ABJ效应。研究组精确控制晶体生长和退火工艺,研制成功WTe1.98晶体并发现了各向异性ABJ-效应:在a-和b-方向均发现了ABJ-效应。图4是WTe1.98晶体沿着a-和b-方向的磁阻随温度、磁场与电场间的夹角间的实验关系。详细的数据拟合证明沿着b-方向的ABJ-效应系数比沿着a-方向的大70%。这个实验结果看似与理论预言的二类外尔半金属特征(2)不吻合,但输运理论分析表明该预言仅适用于理想量子条件,而在经典近似条件下,第二类外尔半金属的ABJ效应仍然是各向同性的。我们的实验结果则正好位于极端量子情况和经典近似情况之间,即处于准经典区域,因此作为一个自然的过渡,我们在a-和b-方向都观察到了ABJ效应,但是b-方向的ABJ效应较强。
实验还发现 :温度大于30K时ABJ效应就消失了。其可能的原因是温度导致的拓扑转变。为了证明这个推测,又测量了从20 K到300 K的WTe2晶体的晶格常数变化。利用第一性原理计算证明:外尔点仅在60 K以下才出现,而在60 K以上外尔点处出现了一个非常小的能隙。这充分说明WTe2第二类外尔半金属态对晶格常数/温度异常敏感。
这个工作证明:第二类外尔半金属在准经典条件下会出现各向异性的ABJ效应;对于WTe2材料,其二类外尔半金属态对于温度/晶格常数非常敏感。这些结果展示了第二类外尔半金属材料丰富的物理特性,深化了对第二类外尔半金属材料这一类新的拓扑材料物理的认识。