近年来,世界各地相继兴建了许多大跨度缆索承重桥梁,这些桥梁投资巨大,不仅是交通运输线上的关键设施,而且,因为外形美观,有些已成为当地的标志性建筑。但由于长期承受恒载、活载与疲劳荷载作用,并暴露于风雨、潮湿与污染的大气环境中,大跨度缆索承重桥梁的缆索系统极易遭受疲劳与腐蚀破坏,使缆索的实际使用寿命大大低于设计寿命。作为缆索承重桥梁的主要受力构件,缆索的安全性和耐久性对桥梁的正常使用和整体安全极为重要,一旦缆索产生损伤会使其承载能力降低或丧失,甚至导致桥梁垮塌。 相对于缆索承重桥梁的建造速度和规模,缆索损伤的研究还相对滞后,至今还没有形成关于缆索损伤识别、缆索损伤可靠度研究、缆索损伤后桥梁体系可靠性研究等方面的统一标准。因此,在发挥缆索构件在桥梁工程中优势的同时,如何准确了解缆索的健康状况,采用何种手段对其损伤加以有效识别,如何快速的对损伤缆索的可靠度以及缆索损伤后桥梁结构的整体可靠性进行评价,并及时准确的提出合理、有效的维修加固措施等己经成为桥梁工程技术界亟待解决的问题。 本项目采用理论分析、数值计算、试验研究和实际工程应用相结合的研究方法,依托目前世界上最先进的无线传感器Imote2 节点,实现数据自动化采集、远距离传输和智能化处理,基于无线传感技术建立了桥梁状态监测系统,并逐步建立可用于缆索损伤识别以及桥梁结构可靠度分析所需参数的数据库;提出了基于kriging 模型的缆索损伤识别方法尽可能准确的识别缆索损伤位置及损伤程度;提出了kriging改进响应面法计算评估损伤缆索的可靠度,通过敏感性分析掌握参数对缆索损伤的影响;最后基于随机有限元法建立了缆索损伤后全桥体系可靠度研究方法,评估缆索损伤后对桥梁承载力的影响及全桥的安全可靠性,提出切实可行的维修加固方案,确保桥梁继续安全运营。项目成果可为缆索承重桥梁及时调整或更换受损缆索提供依据,为桥梁可靠性评估提供依据,具有重要的理论意义和工程应用价值,且对于实现缆索寿命最大化、保证交通安全,也具有很高的经济效益和社会效益。 2100433B