1 最大不平衡力分析
FLAC3D程序采用最大不平衡力来刻划计算的收敛过程。单元的最大不平衡力随着计算时步的变化过程。单元的最大不平衡力随计算时步增加而逐渐趋于极小值,说明计算是稳定的。
2 位移分析
在FLAC3D数值计算过程中,若边坡达到极限破坏状态,滑移带内单元节点的位移将产生突变,而且,如果程序继续迭代下去,节点的位移还将继续无限发展下去,程序无法从计算方程组中找到一个既能满足静力平衡又能满足应力2应变关系和强度准则的解,此时,可以从位移的收敛标准来判断计算不收敛。
本次计算对坡面顶点(195, 0, 178)进行了位移监控。随着计算迭代时步的增加,该点水平方向位移和垂直方向位移均趋向于一定值。由图还可以看出边坡位移比较大,这主要是因为排土场堆积高度较大,散体物料和地基软层的弹模都很低,变形较大是合理的。因此对地基软弱层的处理(如去除基底软弱层,在地基软弱层中加碎石)是边坡稳定性防治的重要措施。
3 塑性区分析
边坡整体失稳将发生于强度软弱带或应力集中区, 该部位土体单元将产生不同程度的不可恢复的塑性变形,若发生塑性变形的软弱带或应力集中区相互贯通, 则表明边坡内将在相互贯通的剪切破坏面发生整体失稳。塑性应变的发生与发展表明了土体屈服或破坏的发生与发展程度,塑性应变的大小能够从本质上描述土体的屈服或破坏发展过程,因此可以采用塑性区的相互贯通来评判边坡整体失稳破坏 。