造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

第二型曲面积分第二型曲面积分的计算

2022/07/16315 作者:佚名
导读:转化为二重积分,必须注意两个问题: (1)将曲面S向相应的坐标平面投影,求得二重积分的积分区域。 (2)根据曲面的侧(即法向量的方向)确定二重积分的符号。 根据积分表达式,确定投影平面,如要计算 P(x,y,z)dydz,必须将S向yz平面投影,求 得二重积分的积分区域Dyz,此时 P(x,y,z)dydz=± P(x(y,z),y,z)dydz,其中曲面S:x=x(y,z),(y,z)∈Dyz,

转化为二重积分,必须注意两个问题:

(1)将曲面S向相应的坐标平面投影,求得二重积分的积分区域。

(2)根据曲面的侧(即法向量的方向)确定二重积分的符号。

根据积分表达式,确定投影平面,如要计算

P(x,y,z)dydz,必须将S向yz平面投影,求

得二重积分的积分区域Dyz,此时

P(x,y,z)dydz=±
P(x(y,z),y,z)dydz,其中曲面S:x=x(y,z),(y,z)∈Dyz,二重积分的符号取决于法向量与x正向的夹角,为锐角时取正号,钝角时取负号,简记为前正、后负 。

同理

Q(x,y,z)dzdx=±
Q(x,y(z,x),z)dzdx,(符号:右正,左负)

R(x,y,z)dxdy=±
R(x,y,z(x,y))dxdy,(符号:上正,下负)

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读