Var与CVar度量办法评析
Var度量方法由于开发的较早,已成为世界金融领域较为流行的风险度量方法。它采取了向后测试法运算简洁对数据要求比较低。它能充分检测金融资产对风险来源的敞口性和市场逆向变化的可能性,以最简单的方法将不同的市场因子不同市场风险集成一个数,基本准确的测量了不同风险来源及其相互作用产生的潜在损失,较好的迎合了金融市场发展的动态性、复杂性、全球一体化趋势。 但是与CVar度量方法比较有三个致命的缺陷,其一,因为它无法考察分位点以下的信息,忽略了资产的尾部风险,这样可能引发因小概率事件而引起的巨额损失,甚至是金融危机,这需要引起足够的重视。其二,Var不具有次可加性,这将会诱导投资者做出错误判断进而产生错误的风险规避策略即,一个包含多个金融部门的机构若将其资产分别划分给旗下各个部门,由各个部门分别计算Var再求和,就能实现整个金融机构风险的降低。但实际上是做不到的,这是因为 违背次可加性而给系统带来的漏洞。其三,Var不能起到预警作用,这是由Var是一种利用历史数据预测未来分布造成的。
CVar度量方法是基于Var方法基础之上建立起来的,自然比Var方法更加理想与完善。它避免了由于Var自身缺陷有可能带来的风险,有效的弥补了Var尾部损失测量的不充分性,并且满足次可加性这样就减少了对投资者进行有害激励的负面效应,尤其是用于组合投资风险的度量。
作为新兴的金融工具,CVar也还存在多方面的不足有待改进。首先,CVar计算复杂,相对Var对数据要求更高,也不能确保估值的稳定性。其次,CVar向后测试要比Var复杂的多,Var向后测试只需将实际损失超过Var的频率与置信水平比较即可,但CVar的向后测试需要比较实际损失超过Var的期望值与估算出的CVar,通常损失超过Var水平很低,需要更多的数据支持同时对期望值计算精度也大大的降低了。CVar度量方法显著的增强了风险度量的有效性,降低了随机性,对风险描述也更趋合理、科学。