我们知道,在常温常压下金刚石是亚稳相,这其中碳原子的4 个价电子是以sp3杂化方式形成四面体配位的键合结构。而石墨则是一种更稳定的同素异形体,它的碳原子以sp2 杂化方式形成三配位键合结构。石墨的形成在热动力学上优于金刚石的形成,这意味着亚稳相的 sp2杂化键合只能在非平衡过程中形成。类金刚石薄膜都是亚稳态材料,在制备方法中需要有荷能离子轰击生长表面这一关键。自从Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。
这之中有两个法分别为气相法和沉积法:
气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米粒子的方法。 沉积法又分为直接沉淀法、共沉淀法和均匀沉淀法等,都是利用生成沉淀的液相反应来制取。
(一)物理气相沉积
物理气相沉积我们将它简称为PVD,其核心技术指的当一切处在真空条件下时,至少有一种沉积元素被雾化(原子化),进行的气相沉积工艺。这种技术是一种对材料表面进行改性处理的技术,最初也是最成功的发展领域是在半导体工业、航天航空等特殊领域,而被用在在机械工业中作为一种新型的表面强化涂料技术起始于80 年代初,这种技术集中在切削工具的表面强化,以改善机械摩擦副零件性能为目的。其特点是能够在各种基材上沉积膜层,膜基的界面可以得到改进,沉积速率高等。物理气相沉积类金刚石一般采用高纯石墨为碳源,也可以用甲烷气体为碳源,具体方法主要有:离子束沉积、溅射沉积、真空阴极电弧沉积、脉冲激光沉积等。
在分类上,PVD(物理气相沉积)镀膜技术主要分为三类,真空蒸发镀膜、真空溅射镀和真空离子镀膜。对应于PVD技术的三个分类,相应的真空镀膜设备也就有真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机这三种。
近十多年来,真空离子镀膜技术的发展是最快的,它已经成为当今最先进的表面处理方式之一。我们通常所说的PVD镀膜 ,指的就是真空离子镀膜;通常所说的PVD镀膜机,指的也就是真空离子镀膜机。
(二)化学气相沉积
化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。
化学气相沉积的英文词原意是化学蒸汽沉积(Chemical Vapor Deposition,CVD),因为很多反应物质在通常条件下是液态或固态,经过汽化成蒸汽再参与反应的。而化学气相沉积的古老原始形态可以追溯到古人类在取暖或烧烤时熏在岩洞壁或岩石上的黑色碳层
作为现代CVD技术发展的开始阶段在20世纪50年代主要着重于刀具涂层的应用。从20世纪60~70年代以来由于半导体和集成电路技术发展和生产的需要,CVD技术得到了更迅速和更广泛的发展。
化学气相沉积(CVD)是现代半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,化学气相沉积表示的是:将气态物质以化学反应生成某种固态物质并沉积到某种基片上的一种化学过程。这种方法多用来制备含氢碳膜,其基本的原理是利用碳氢化合物,如苯、甲烷、乙炔等在辉光放电或其他条件下产生的等离子体中分解成为C H 离子,同时对基体施加负偏压,在负偏压作用下,这些含有碳氢的离子团沉积到基体上形成碳膜。这其中淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。
而研究人员们发现为适应CVD技术的需要,选择原料、产物及反应类型等通常应满足:反应剂在室温或不太高的温度下最好是气态或有较高的蒸气压而易于挥发成蒸汽的液态或固态物质,且有很高的纯度;通过沉积反应易于生成所需要的材料沉积物,而其他副产物均易挥发而留在气相排出或易于分离;反应易于控制。
实际上,对于化学气相沉积来说这其中的反应是很复杂的,有很多必须考虑的因素,沉积参数的变化范围是很宽的:在其反应室内的压力、晶片的温度、气体的流动速率、气体通过晶片的路程、气体的化学成份、一种气体相对于另一种气体的比率、反应的中间产品起的作用、以及是否需要其它反应室外的外部能量来源加速或诱发想得到的反应等。额外能量来源诸如等离子体能量,当然会产生一整套新变数,如离子与中性气流的比率,离子能和晶片上的射频偏压等。
然后,考虑沉积薄膜中的变数:如在整个晶片内厚度的均匀性和在图形上的覆盖特性(后者指:跨图形台阶的覆盖),薄膜的化学配比(化学成份和分布状态),结晶晶向和缺陷密度等。当然,沉积速率也是一个重要的因素,因为它决定着化学气相沉积反应的产出量,高的沉积速率常常要和薄膜的高质量折中考虑。反应生成的薄膜不仅会沉积在晶片上,也会沉积在反应室的其他部件上,对反应室进行清洗的次数和彻底程度也是很重要的。
CVD反应沉积温度的耕地温化是一个发展方向,金属有机化学气相沉积技术(MOCVD)是一种中温进行的化学气相沉积技术,采用金属有机物作为沉积的反应物,通过金属有机物在较低温度的分解来实现化学气相沉积。
近年来发展的等离子体增强化学气相沉积法(PECVD)也是一种很好的方法,最早用于半导体材料的加工,即利用有机硅在半导体材料的基片上沉积SiO2。PECVD将沉积温度从1000℃降到600℃以下,最低的只有300℃左右,等离子体增强化学气相沉积技术除了用于半导体材料外,在刀具、模具等领域也获得成功的应用。