模块化多电平换流器(modular multilevelconverter, MMC)已成为柔性直流输电系统的首选换流器拓扑。我国已建成的上海南汇柔性直流工程、南澳三端柔性直流工程、舟山五端柔性直流输电工程以及正在建设中的厦门柔性直流工程都采用模块化多电平换流器结构。国际上SIEMENS已建成的美国跨湾工程(TBC)和法国一西班牙联网工程(INELFE工程)都采用模块化多电平换流器结构。同时,ABB公司提出了一种级联两电平结构(cascaded two level ,CTL),其本质仍为模块化多电平换流器,并且ABB后续建设的数项柔性直流工程都采用CTL结构。因此,模块化多电平换流器已由最初的低压、小容量示范工程向高电压、大容量方向快速发展,展现出很好的发展前景。
然而,高电压、大容量、超大规模模块化多电平换流器高效建模受限于建模方法、数学理论、等效实验方法和计算机硬件等众多限制,严重制约着相关领域的快速发展。因此,建立模块化多电平换流器的数学和仿真模型能反映换流器的一般运行规律,对研究柔性直流输电系统运行特性、主电路参数的选取以及控制保护系统的设计具有重要的指导作用,开展不同时问尺度的模块化多电平换流器电磁暂态建模方法的研究,在保证仿真精度的前提下研究极大地提高模块化多电平换流器仿真效率的理论和方法,提出适用于不同应用场景的模块化多电平换流器高效仿真模型,具有重要的理论和工程意义。
模块化多电平换流器系统的仿真分析,较之现场试验具有良好的可控性、无破坏性和经济性,对验证控制系统的有效性及进行工程方案的比较等方面发挥着重要作用,为工程调试奠定了基础。目前对MMC的仿真研究按仿真计算同实际过程的时问比例主要分为离线仿真和实时仿真,按仿真基于瞬时值或有效值分为电磁暂态仿真和机电暂态仿真,按不同的仿真步长可分为纳秒级仿真、微秒级仿真、毫秒级仿真。
模块化多电平换流器具有很好的工程应用前景,针对不同的仿真类型与仿真需求,模块化多电平换流器的建模方法各有不同。因此,对模块化多电平换流器建模方法的研究现状进行总结和剖析是很有必要的 。