控制规则是模糊控制器的核心,它的正确与否直接影响到控制器的性能,其数目的多少也是衡量控制器性能的一个重要因素,下面对控制规则做进一步的探讨。
模糊控制规则的取得方式:
(1) 专家的经验和知识
模糊控制也称为控制系统中的 专家系统,专家的经验和知识在其设计上有余力的线索。人类在日常生活常中判断事情,使用语言定性分析多于数值定量分析;而模糊控制规则提供了一个描述人类的行为及决策分析的自然架构;专家的知识通常可用if….then的型式来表述。
藉由询问经验丰富的专家,获得系统的知识,并将知识改为if….then的型式,如此便可构成模糊控制规则。除此之外,为了获得最佳的系统性能,常还需要多次使用 试误法,以修正模糊控制规则。
(2) 操作员的操作模式
现在流行的专家系统,其想法只考虑知识的获得。专家可以巧妙地操作复杂的控制对象,但要将专家的诀窍加以逻辑化并不容易,这就需要在控制上考虑技巧的获得。许多工业系统无法以一般的控制理论做正确的控制,但是熟练的操作人员在没有数学模式下,却能够成功地控制这些系统:这启发我们记录操作员的操作模式,并将其整理为if….then的型式,可构成一组控制规则。
(3) 学习
为了改善模糊控制器的性能,必须让它有自我学习或自我组织的能力,使模糊控制器能够根据设定的目标,增加或修改模糊控制规则。
模糊控制规则的形式主要可分为二种:
(1) 状态评估模糊控制规则
状态评估(state evaluation)模糊控制规则类似人类的直觉思考,它被大多数的模糊控制器所使用,其型式如下:
Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain
then y is Ci
其中x1,x2,…….,xn及y为语言变量或称为模糊变量,代表系统的态变量和控制变量;Ai1,Ai2,….,Ain及Ci为语言值,代表论域中的 模糊集合。该形式还有另一种表示法,是将后件部改为系统状态变量的函数,其形式如下:
Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain
then y=f1(x1,x2,…….,xn)
(2)目标评估模糊控制规则
目标评估(object evaluation)模糊控制规则能够评估控制目标,并且预测未来控制信号,其形式如下:
Ri:if(U is Ci→(x is A1 and y is B1))then U is Ci