粘土是陶瓷工业的主要原料,其性质对陶瓷的生产有很大的影响,因此掌握粘土的性质,尤其是工艺性质是稳定陶瓷生产的基本条件。粘土的工艺性质主要取决于粘土的矿物组成、化学组成与颗粒组成,其矿物组成是基本因素。
如膨润土主要是蒙脱石矿物,由于其矿物类型及细颗粒含量较多,表现出粘性强,成形水分高,收缩大,烧结温度低等特性;苏州高岭土由于其含有大量杆状结构外形的高岭石,因而可塑性低,干燥气孔率高,干燥强度低,烧成收缩大,泥浆流动时的含水量多,且呈强烈触变性等特性。
(1)可塑性
(2) 结合性
(3)离子交换性
(4) 触变性
(5)干燥收缩与烧成收缩
(6)烧结性能
(7)耐火度
(一)可塑性
1、概念:可塑性是指粘土与适量的水结合后所形成的泥团,在外力作用下产生变形但不开裂。当外力去掉后仍保持其形状不变的能力。
该定义包括两个含义:
一是施加的外力必须大于泥团的屈服值,当外力去掉后泥团内部的引力和斥力达到新的平衡以保持其形变;
二是在产生形变量不出现开裂。
2、影响粘土可塑性的因素
1)固相的性质:主要是指固体物料类型、颗粒形状、颗粒大小及粒度分布、颗粒的离子交换能力等。一般说来固体分散相的颗粒愈小,分散度愈高,比表面积愈大,可塑性就愈好;对于具有层状结构的粘土矿物呈薄片状颗粒要比呈杆状颗粒,或呈棱角状颗粒的具有更好的可塑性;此外,粘土矿物的离子交换能力较大者,其可塑性也较高。
2)液相的性质:主要是指液相对固相的浸润能力和液相的粘度。对粘土颗粒具有较大浸润能力的液相,其与粘土拌和后就呈较高的可塑性。此类液体粘度越大,其可塑性也就越高。
3)固相与液相的相对数量
当粘土中加入的水量不多时,粘土还难以形成可塑状态,容易散碎,只有水量加入到一定程度,粘土才形成具有可塑状态的泥团,这时泥团的含水量称为塑限含水量。
若继续在泥团中加入水分,泥团的可塑性会逐渐增高,直至泥团能自行流动变形,此时的含水量称为液限含水量。
但在生产中适合于成形的泥团,其含水量一般都在塑限含水量与液限含水量之间,此时泥团的含水量称为工作泥团的可塑水量。
各种粘土的可塑水量很不一致,可塑性大的粘土所需可塑水量也愈多:
高可塑性粘土 : 可塑水量达28%~40%
中可塑性粘土: 可塑水量达20%~28%
低可塑性粘土:可塑水量达15%~20%
3、粘土可塑性的测定方法
1)可塑性指数:是指粘土的液限含水率与塑限含水率之差。它表示粘土能形成可塑泥团的水分变化范围。指数越大则成形水分范围大,成形时不易受周围环境湿度及模具的影响,即成形性能好。
2)可塑性指标:指在工作水分下,粘土泥团受外力作用最初出现裂纹时应力与应变的乘积,同时还应测定泥团的相应含水率。可塑性指标也反应了粘土泥团的成形性能的好坏,但要注意相应的含水率。若相应含水率大,则工作水分多,干燥过程易变形、开裂。
3)根据可塑指数或可塑指标分类:
强可塑性粘土 指数>15或指标>3.6
中可塑性粘土 指数7~15或指标2.5~3.6
弱可塑性粘土 指数1~7或指标<2.5
非可塑性粘土 指数<1
4、提高坯料可塑性的措施
1)将坯料原矿进行淘洗,除去所夹杂的非可塑性物料,或进行长期风化。
2)将浸润了的粘土或坯料长期陈腐。
3)将泥料进行真空处理,并多次练泥。
4)掺用少量的强可塑性粘土。
5)添加糊精、胶体SiO2 、羧甲基纤维素等胶体物质。
5、降低坯料可塑性的措施
1)加入非可塑性粘土,如石英、瘠性粘土、熟瓷粉等。
2)将部分粘土预先煅烧。
(二)结合性
1、概念:指粘土能粘结一定细度的瘠性物料,形成可塑泥团并有一定干燥强度的性能。
2、结合力的测定
在工程上要直接测定分离粘土质点所需的力比较困难,生产上常用测定由粘土制作的生坯的抗折强度来间接测定粘土的结合力。
在实验中通常以能够形成可塑泥团时所加入标准石英砂(颗粒组成为:0.25~0.15mm占70%,0.15~0.09mm占30%)的数量及干后抗折强度来反映。
加砂量可达50%时为结合力强的粘土; 加砂量达25%~50%时为结合力中等的粘土; 加砂量在20%以下时为结合力弱的粘土。
(三)离子交换性
1、概念:粘土颗粒带有电荷,其来源是其表面层的断键和晶格内部被取代的离子,因此必须吸附其它异号离子来补偿其电价,粘土的这种性质称为离子交换性。
2、交换容量:表示离子交换的能力,它是100g干粘土所吸附能够交换的阳离子或阴离子的量。单位为微摩尔﹒10/克(mol﹒10/g)。
影响离子交换容量的因素:
1)粘土矿物的种类。
2)粘土中有机物含量和粘土矿物的结晶程度。
3)吸附的离子种类。粘土吸附阳离子的能力比阴离子要大。而粘土吸附阳离子的种类不同,其交换容量也不同。
(四)触变性
1、概念:粘土泥浆或可塑泥团受到振动或搅拌时,粘度会降低而流动性增加,静置后逐渐恢复原状。此外,泥料放置一段时间后,在维持原有水分的情况下也会出现变稠和固化现象,这种性质统称为触变性。
2、在生产中一般希望泥料有一定触变性。泥料触变性过小时,成形后生坯的强度不够,影响脱模与修坯的质量。触变性过大时,在管道输送过程中会带来不便,成形后生坯也易变形。因此控制泥料的触变性,对满足生产需要,提高生产效率和产品品质有重要意义。
3、影响粘土的触变性的因素:粘土的矿物组成、粒度大小与形状、水分含量、使用电解质种类与用量、以及泥料(包括泥浆)的温度等。
矿物颗粒愈细,活性边表面愈多,愈易呈触变性;
球状颗粒不易显示触变性;
触变效应与吸附离子及吸附离子的水化密切相关。粘土吸附的阳离子其价数愈小或价数相同而离子半径愈小者,其触变效应愈大。
含水量大的泥浆,不易形成触变结构,反之易形成触变结构而呈触变现象。
温度升高,粘土质点的热运动剧烈,使粘土颗粒间的联系力减弱,不易建立触变结构,从而使触变现象减弱。
4、粘土泥料的触变性的测定
以厚化度(或稠化度)来表示。厚化度以泥料的粘度变化之比或剪切应力变化的百分数来表示。
1)泥浆的厚化度是泥浆放置30min和30s后其相应粘度之比。即
泥浆厚化度=t30min /t30s
式中:t30min 为100ml泥浆放置30min后,由恩式粘度计中流出的时间;t30s 为100ml泥浆放置30min后,由恩式粘度计中流出的时间。
2)可塑泥团的厚化度为放置一定时间后,球体或圆锥体压入泥团达一定深度时剪切强度增加的百分数。
泥团厚化度 = (Fn-F0)/ F0×100%
式中: F0 ----泥团开始承受的负荷,N;Fn ----经过一定时间后, 球体或锥体压入相同深度时泥团承受的负荷,N。
(五)干燥收缩和烧成收缩
1、概念:粘土泥料干燥时,因包围在粘土颗粒间的水分蒸发,颗粒相互靠拢引起体积收缩,称为干燥收缩。
粘土泥料在煅烧时,由于发生一系列的物理化学变化(如脱水作用、分解作用、莫来石的生成、易熔杂质的熔化,以及这些熔化物充满质点间空隙等等),引起粘土再度收缩,称为烧成收缩。
这两种收缩构成粘土泥料的总收缩。
2、收缩测定是以直线长度或体积大小的变化来表示。为了方便起见,可将体积收缩近似等于直线收缩的3倍,但有6%~9%的误差。
(六)烧结温度与烧结范围
1、概念:
粘土在煅烧过程中,温度超过900℃以上时,低熔物开始出现,低熔物液相填充在未熔颗粒之间的空隙中,并由其表面张力的作用,将未熔颗粒进一步靠近,使体积急剧收缩,气孔率下降,密度提高。这种体积开始剧烈变化的温度称为开始烧结温度(T1)。
随着温度的继续升高,粘土的气孔率不断降低,收缩不断增大,当其密度达到最大状态时(一般以吸水率等于或小于5%为标志),称为完全烧结,相应于此时的温度叫烧结温度(T2)。
从完全烧结开始,温度继续上升,会出现一个稳定阶段,体积密度和收缩等不发生显著变化。持续一段时间后,由于粘土中的液相不断增多,以致于不能维持粘土原有的形状而变形,同时也会发生一系列高温化学反应,使粘土试样的气孔率反而增大,出现膨胀。出现这种情况的最低温度称为软化温度( T3 )。
通常把烧结温度到软化温度之间粘土试样处于相对稳定阶段的温度范围称为烧结范围( T2 ~T3)。
烧结范围的大小取决于粘土中熔剂矿物的种类和数量。优质高岭土可达200℃,伊利石类粘土仅为50~80℃。陶瓷生产中通常要求粘土具有100~150℃以上或更宽的烧结范围。
烧成温度范围取决于液相量的生成速度和液相粘度随温度变化的幅度。若粘土中含有的熔剂杂质数量多,液相量增加速率大,而液相粘度随温度的升高下降的幅度大,其烧结温度范围较窄。纯耐火粘土的烧结温度范围为250℃,低钙泥灰岩仅20~30℃。
烧结范围愈宽,陶瓷制品的烧成操作愈容易掌握,也愈容易得到煅烧均匀的制品。
粘土的烧结温度和烧结温度范围通常采用实验方法确定,也可用粘土化学成分进行估算。
2、生产中常用吸水率来反映原料的烧结程度。一般要求粘土原料烧后的吸水率<5%。
(七)耐火度
1、概念:耐火度是指材料在高温作用下达到特定软化程度时的温度。它反映了材料抵抗高温作用的性能。
2、粘土的耐火度主要取决于其化学组成。
Al2O3含量高其耐火度就高,碱类氧化物能降低粘土的耐火度。通常可根据粘土原料中的Al2O3/SiO2比值来判断耐火度,比值愈大,耐火度愈高,烧结范围愈宽。
3、耐火度的测定——三角锥法:是将一定细度的原料制成一截头三角锥(高30mm,下底边长8mm,上顶边长2mm),在高温电炉中以一定的升温速度加热,当锥内复相体系因重力作用而变形以致顶端软化弯倒至锥底平面时的温度,即是试样的耐火度 。