水力学的发展可以追溯到很早的时候。中国古代的水利工程技术有着光辉的成就,对于水流运动的规律也积累了相当深刻的认识。四千多年前, 大禹治水就注意了“顺水之性”: 两千多年前都江堰工程所总结的“深淘滩、低作堰”经验; 古代利用孔口出流原理的计时工具——铜壶滴漏,都说明当时对于水流运动的规律已有一定的定性认识。明代潘季驯(1521—1595)提出“筑堤束水、以水攻沙”的治水方针,对于水流连续原理和水沙相互作用已有相当深刻的定性分析。
中国古代还提出了一些经验的定量估算。《管子·度地篇》中所述“夫水之性, 以高走下则疾,至于漂石,而下向高,即流而不行”,并指出“尺有十分之,三里满四十九者, 水可走也”,说明在三里的距离内渠底降落四十九寸,约相当于千分之一的坡降, 渠水可以顺势流走。
水力学系统理论的萌芽,虽然可以追溯到古希腊阿基米德(Archimedes公元前287~前212)所提出的阿基米德浮体定律; 但以后的1000多年水力学在系统理论上的进展很慢。水力学的进一步发展是在16世纪以后的欧洲。1585年斯蒂芬(S. Steven 1548~1620)把刚体平衡的研究方法应用于水静力学。1643年托里拆利(E. Torricelli 1608~1647) 初步确立了孔口泄流的定律。1650年帕斯卡尔(B. Pascal 1623~1662)阐述了流体中压力传递的规律。1686年牛顿(I. Newton1642~1727)提出了流体内摩擦的基本定律。
水力学开始成为一门独立的学科是在18世纪中叶以后,它以古典流体力学(或古典水动力学)作为理论基础,并沿着实验和应用的方向发展。
古典流体力学是在古典力学的基础上,运用严密的数学工具建立流体运动的基本方程, 发展成为力学的一个独立分支。1738年伯诺里(D. Bernoulli1700~1782)提出了水动力学的伯诺里方程。1755年欧拉(L. Euler 1707~1783)建立了理想流体的欧拉微分方程。粘性流体运动微分方程是纳维埃(L. M.H. Navier 1785~1836)在1826年初次提出, 斯托克斯(G. G. Stokes 1819~1903)在1845年完成。古典流体力学由于求解上的数学困难,还难以解决实际问题。
早期的水力学主要着眼于解决实际的生产问题,针对具体的水流现象,采用试验和观测的手段,直接寻求水力要素间的定量经验关系,其中有些著名的经验公式至今仍得到广泛的应用,例如谢才(A. Chezy1718~1798) 1769年总结的明渠均匀流的谢才经验公式和曼宁(R. Manning 1816~1897)1889年总结的谢才系数的曼宁经验公式。但是当时水力学由于理论指导的不足, 其成果也往往有局限性, 难以解决复杂的问题。
19世纪末叶,特别是20世纪以来,水力学的发展进入了一个新时期。这个时期生产技术的发展, 向古典流体力学提出了很多实际课题, 要求密切联系实际。也对早期的水力学提出了更高的要求, 必须进行理论概括。同时科学技术的发展, 也为理论与实际的结合创造了良好条件。一方面紊流和边界层等理论的发展,已经使研究工作深入到水流内部机理, 为分析复杂的实际粘性流体的运动开辟了道路。雷诺(O Reynolds1842~1912) 在1883年系统阐明了存在层流和紊流两种流态, 并于1884年推导了紊流运动的雷诺方程: 普兰特(L. Prandtl 1875~1953) 于1904年创立了边界层理论使流体力学进入了一个新的阶段。另一方面迅速发展的现代实验技术和建立在相似理论及量纲分析基础上的实验理论, 也大大提高了探测水流运动规律和对实验资料进行理论概括的能力。原来相互脱节的古典流体力学和早期的水力学相互补充日益结合, 形成了现代的液体力学和水力学。