造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

水文地质地球物理勘探测井

2022/07/16126 作者:佚名
导读:视电阻率测井和自然电位测井用于划分孔内岩层界面,确定含水层位置和厚度,划分咸、淡水界面,测定地下水矿化度。 γ测井其曲线主要反映岩层所含泥质的多少,据此可确定含水层和隔水层。 γ-γ测井通过鉴别岩层的密度差异来划分钻孔剖面,确定破碎带。 中子-γ测井根据所测得的二次γ射线强度来区分含氢量不同的岩层。由于岩石中的水是含氢量最多的物质,因此可根据中子-γ曲线变化,确定岩石的含水性质和孔隙度。 井液电阻

视电阻率测井和自然电位测井用于划分孔内岩层界面,确定含水层位置和厚度,划分咸、淡水界面,测定地下水矿化度。

γ测井其曲线主要反映岩层所含泥质的多少,据此可确定含水层和隔水层。

γ-γ测井通过鉴别岩层的密度差异来划分钻孔剖面,确定破碎带。

中子-γ测井根据所测得的二次γ射线强度来区分含氢量不同的岩层。由于岩石中的水是含氢量最多的物质,因此可根据中子-γ曲线变化,确定岩石的含水性质和孔隙度。

井液电阻率测井其原理是,将钻井液盐化,使其与含水层中地下水的导电性存在一定差异,然后用钻井液电阻计在不同时间沿钻孔不同深度测量钻井液电阻率的变化,用以确定孔内各含水层的水文地质特点。该法又可进一步分为扩散法、注入法和提捞法。扩散法是在钻井液盐化后,观测在自然状态下钻井液沿钻孔不同深度电阻率的变化过程。而注入法和提涝法则是在钻井液盐化后,在向钻孔注水或从钻孔提水的条件下进行测量。这样,根据钻井液浓度,即电阻率变化曲线,即可划分渗透性含水层的界面和厚度,还可计算地下水的渗透速度或确定渗透系数。

充电法测井用于确定地下水流向和流速,估计含水层的渗透系数;在条件有利时,可以用来探测喀斯特充水裂隙及地下暗河。其原理是,向钻孔中含水层段投放食盐,通过在地面测量等电位线随时间推移而出现的位移,来圈定随地下水流动的盐液在钻孔四周分布形状的变化。该法适用于非承压淡水含水层埋藏深度不大 (100m以浅) 的地段。

上述几种测井方法的缺点是,难于确定渗透性能微弱的含水层;当钻孔涌水量大,含水层层数多,或有其它复杂情况时,扩散法和注入法效果不好;而且所测定的参数为概值,测定涌水量误差较大。

流量测井根据多含水层混合井流理论建立起来的一种孔中测流技术。它在钻孔抽水、注水、涌水、漏水以及含水层间通过钻孔发生相互补给等有轴向水流运动的条件下,利用放在孔内的传感器,测量不同深度的流速,进而计算其流量,借以划分含水层和隔水层,测定含水层的厚度、渗透性能变化及有关参数;在钻孔揭穿多个含水层时,测定各含水层的分层流量,得到各含水层流量和水位降深关系曲线,取得分层水位和其它水文地质参数。

根据施测方法,流量测井又可分为连续测量、点测、定点持续测量等三种方法。连续测量,是在传感器恒速移动的同时,连续测量流量。其特点是施测时间短,易进行重复性检测,资料比较系统、完整,便于选择计算孔段,记录仪可以和煤田测井共用。点测,即将传感器分别静置在各个测点上,然后观测各测点上传感器叶轮所对应的转速,绘出转速随深度变化曲线。其特点是施工简单,适应性强,不用配备记录仪,施测仪器简单。定点持续测量,测点一般布置在钻孔孔壁比较完整的隔水层段内,并尽量使其条件与仪器标定条件相同,以利提高资料解释精度。定点持续测量可以保证重点孔段资料的完整性和精度,了解流量的变化过程。

流量测井仪所采用的传感器有叶轮式、热敏电阻式及其它形式,而以叶轮式居多。叶轮式传感器流量测井仪直接测得转速值,然后利用不同孔径中转速(或幅值) 与流量的标定曲线,将其转换成流量值。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读