造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

求解界面问题的浸入界面有限元方法及其预处理算法结题摘要

2022/07/16246 作者:佚名
导读:该项目对椭圆界面问题、平面线弹性界面问题、Stokes界面问题、四阶方程界面问题等,深入研究了浸入界面有限元方法。对于分片不连续系数带非齐次跳跃条件的椭圆界面问题,我们利用奇异去除技巧去处理非齐次跳跃条件,提出了一种快速的增广浸入界面有限元方法;对于椭圆界面问题的浸入界面有限元方法,我们提出了一种对称相容的浸入界面有限元方法;对于具有分片常系数的椭圆界面问题,我们通过引入一个新的增广变量,提出了一

该项目对椭圆界面问题、平面线弹性界面问题、Stokes界面问题、四阶方程界面问题等,深入研究了浸入界面有限元方法。对于分片不连续系数带非齐次跳跃条件的椭圆界面问题,我们利用奇异去除技巧去处理非齐次跳跃条件,提出了一种快速的增广浸入界面有限元方法;对于椭圆界面问题的浸入界面有限元方法,我们提出了一种对称相容的浸入界面有限元方法;对于具有分片常系数的椭圆界面问题,我们通过引入一个新的增广变量,提出了一种新的无需利用奇异值分解插值的增广浸入界面有限元方法;对具有分片变系数的椭圆界面问题,通过引入法向导数作为增广变量,我们提出了一种新的增广方法。对于两项流的Stokes界面问题,我们基于Nitsche方法和鬼罚方法,对最低阶的P1/P1元提出了一种新的非匹配稳定化有限元方法;对于Stokes方程模拟的流体流和达西定律建模的多孔介质流之间的流体结构耦合问题,我们提出了一种基于笛卡尔网格的新的有限差分方法。对平面弹性界面问题,我们用P1协调元逼近位移的第一个分量,用P1非协调元逼近位移的第二个分量,提出了一种新的非协调浸入界面有限元方法;为了克服用协调元构造扩展有限元空间的非协调性,对椭圆界面题,我们提出了一种网格与界面非匹配的协调增扩有限元方法,我们利用P1协调元空间逼近解的光滑部分,利用IFEM的技巧在界面附近构造一种特殊的局部有限元空间逼近解的法向导数跳量,我们的协调元空间逼近不依赖于跳跃条件,也不要求系数是分片常数。对具有不连续系数的四阶偏微分方程界面问题,通过引入中间边界条件作为增广变量,我们将原问题转化为在界面带源项跳跃的Poisson方程,提出了一种增广的快速差分方法。对带接触阻抗复合材料热传导问题,通过添加鬼罚项,提出了一种非匹配有限元方法。数值实验表明以上所提方法是有效的。此外,我们还提出了其他一些问题的数值方法,详细结果参见正文。 2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读