玻尔兹曼(L.E.Boltzmann)将麦克斯韦分布律推广到有外力场作用的情况。在等宽的区间内,若E1>E2,则能量大的粒子数dN1小于能量小的粒子数dN2,状态即粒子优先占据能量小的,这是玻尔兹曼分布律的一个重要结果。
经过将近一个世纪的传播,物理学界、化学界渐渐接受了道尔顿的“原子—分子模型”,但原子、分子的确凿证据迟迟没有找到。恰恰此时,一股更强大的科学成就——热力学第一、第二定律出现了。热力学原则上解决了一切化学平衡的问题。1892年,物理化学家奥斯特瓦尔德试图在此基础上证明,将物理学和化学问题还原为原子或分子之间的力学关系是多余的。他试图将“能量”赋以实物一样的地位,甚至要把物质还原为能量。他提出“世界上的一切现象仅仅是由于处于空间和时间中的能量变化构成的”。
在统计学中,麦克斯韦- 玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。它一开始在物理中定义并使用是为了描述(特别是统计力学中描述理想气体)在理想气体中粒子自由移动的在一个固定容器内与其它粒子无相互作用的粒子速度,除了它们相互或与它们的热环境交换能量与动量所产生的非常短暂的碰撞。在这种情况下粒子指的是气态粒子(原子或分子),并且粒子系统被假定达到热力学平衡。 在这种分布最初从麦斯威尔1960年的启发性的基础上衍生出来时 ,玻尔兹曼之后对这种分布的物理起源进行了大量重要调查。
粒子速度概率分布指出哪一种速度更具有可能性:粒子将具有从分布中随机选择的速度,并且比其它选择方法更可能在速度范围内。 分布取决于系统的温度和粒子的质量。 麦克斯韦 - 波尔兹曼分布适用于经典理想气体,这是一种理想化的实际气体。 在实际气体中,存在可以使其速度分布与麦克斯韦 - 波尔兹曼形式不同的各种效应(例如,范德华相互作用,涡流,相对论速度限制和量子交换相互作用)。 然而,常温下的稀释气体表现得非常接近于理想的气体,麦克斯韦速度分布对于这种气体是非常好的近似值。 因此,它形成了动力学气体理论的基础,其提供了许多基本气体性质(包括压力和扩散)的简化解释。