模拟法概率潮流,是将电力系统中的不确定因素作为随机变量建立概率模型,然后抽取概率分布的样本,最后统计输出变量的分布特征。传统的模拟法概率潮流计算方法一般是指随机采样的蒙特卡洛模拟法 ,后来基于随机模拟法改进衍生出重要抽样法 、拉丁超立方采样法和拟蒙特卡洛方法等。
蒙特卡洛模拟是二战时期美国物理学家Metropoli 在执行曼哈顿计划的过程中提出的。蒙特卡洛模拟法以随机模拟和统计实验为手段,是一种从随机变量的概率分布中,通过随机选择数字的方法产生一种符合该随机变量概率分布特性的随机数值序列,作为输入变量序列进行特定分析的求解方法。其计算关键与核心步骤如下:①对潮流方程的输入变量W构造相应的概率模型;②产生随机数序列,作为系统的抽样输入进行大量的数字模拟,每一组采样值通过潮流计算得到相应的模拟实验值;③系统计算,对模拟实验结果进行统计处理,给出所求问题的解。
蒙特卡洛模拟的优点在于样本数量足够大时,计算结果足够精确;并且计算量一般不受系统规模的影响,该方法的抽样次数与抽样精度的平方成反比。缺点在于为提高计算精度,往往需要提高系统抽样规模,从而导致计算时长过大。考虑其精度优势,随机采样的蒙特卡洛模拟法一般用来作为基准方法进行比较,是衡量其他方法准确性的重要参考。
重要抽样法认为期望值附近的采样值对计算结果具有更大的影响力,因此可以重点关注期望值附近的点。基于此,重要抽样法的基本思路是保持原有样本期望值不变,通过改变已知变量概率分布来减小其方差,从而达到减少运算时间的目的。
如何选取新分布中系统的概率分布使得随机变量在期望不变的情况下减小方差是重要抽样法的关键步骤。有文献采用迭代法搜索重要分布函数,给出了若干重要分布函数的定义方法,并结合分散抽样的技巧提高重要抽样法的收敛速度。也有文献利用蒙特卡洛方法模拟出负荷样本,然后利用核密度估计方法估计出负荷模型的密度函数,将之作为重要抽样密度函数,计算出支路潮流和节点电压的概率密度函数 。
重要抽样法在电力系统的概率估计中有着广泛应用,该方法可以快速准确地计算出系统运行状态的期望值,为系统分析提供参考。但重要抽样法中仅以期望为研究对象,对于概率变量的方差、概率分布等参数分析存在天然缺陷,计算结果局限性较大。
为了避免随机采样的蒙特卡洛模拟法的大规模抽样,Mckay等人于1979年提出了拉丁超立方采样法 。它是一种分层采样法,通过改进输入随机变量的样本生成过程,保证其采样值能够有效地反映随机变量的整体分布,算法的出发点就是确保所有的采样区域都能够被采样点覆盖。其基本运算过程分为如下两个步骤:采样和排列。
拉丁超立方采样法的不足是对输入随机变量的处理较为复杂,一方面要求已知输入随机变量的概率分布函数或累积分布函数,另一方面对不同类型概率分布的随机变量相关性需要特殊变换处理困。但该方法作为一种非常有效的估计输出随机变量期望值的方法,由于采样值能够确保覆盖所有输入随机变量的整个分布区域,无须大规模抽样,并且可以有效处理输入变量之间的相关性和随机性,在准确性、稳健性和时效性上都有较大的优势。
拟蒙特卡洛法的出发点与拉丁超立方采样法相同,希望通过有效的空间覆盖采样法来规避蒙特卡洛模拟法中的随机抽样。但与拉丁超立方采样法的处理方式不同,拟蒙特卡洛法采用低差异序列实现多维随机变量的空间采样。
低差异序列,又称伪随机数列,是一系列数值确定的[0,1]区间中的数。在d维变量的空间中,低差异序列中己有n-1个数,生成第n个数的方法是:将这个数插入已有数列中最大的“空白”处,即避免数列在局部空间聚集,从而保证了有限数据的空间全覆盖。
目前拟蒙特卡洛法己经被应用于概率最优潮流计算和含互动式新能源的电网静态稳定分析中。由于采样过程中一次性生成所需序列,该方法具有比拉丁超立方采样法更高的计算效率。但拟蒙特卡洛法对多变量的高维度问题理论基础薄弱、计算效果差,因此目前多用于小规模电力系统分析计算。