造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

疲劳失效失效原因

2022/07/16255 作者:佚名
导读:金属零件产生疲劳断裂的原因各不相同,归纳起来可以从内因(材料的化学成分、组织、内部缺陷、材料强韧化、材料的选择及热处理状况等)和外因(零件几何形状及表面状态、装配与连接、使用环境因素、结构设计、载荷特性等)两个方面来考虑。 1、表面状态 表面的粗糙度对材料的静强度影响不大,但对疲劳强度则有非常明显的影响。承受弯曲疲劳及扭转疲劳负荷的构件,其表面应力最高。大量疲劳失效分析表明,疲劳断裂绝大多数起源于

金属零件产生疲劳断裂的原因各不相同,归纳起来可以从内因(材料的化学成分、组织、内部缺陷、材料强韧化、材料的选择及热处理状况等)和外因(零件几何形状及表面状态、装配与连接、使用环境因素、结构设计、载荷特性等)两个方面来考虑。

1、表面状态

表面的粗糙度对材料的静强度影响不大,但对疲劳强度则有非常明显的影响。承受弯曲疲劳及扭转疲劳负荷的构件,其表面应力最高。大量疲劳失效分析表明,疲劳断裂绝大多数起源于构件的表面。因此,凡是制造工艺过程中产生各类裂纹(如淬火裂纹),尖锐缺口(如表面粗糙度不符合要求、加工刀痕等)都将导致疲劳裂纹的形成并降低构件的疲劳寿命。表面粗糙度值越低,材料的疲劳极限越高,材料强度越高,表面粗糙度对疲劳极限的影响越显著。

2、零件的几何形状及尺寸

零件的几何形状不合理,如存在槽、孔、圆角、缺口和螺纹等常见的外形不连续形式。由于外形不连续,就会产生应力集中。大的应力集中对疲劳裂纹形成和扩展有很大作用。

零件尺寸对疲劳强度也有较大的影响,在弯曲、扭转载荷作用下其影响更大。一般来说,随着零件尺寸的增大,其疲劳极限下降。而且缺口试样比光滑试样的尺寸效应更为显著。

疲劳强度尺寸效应的原因,其一是尺寸增大会增加表面的各种缺陷,增大疲劳裂纹的萌生概率;其二是零件尺寸增大会降低弯曲、扭转零件截面的应力梯度,增大表层高应力的体积,增加萌生疲劳裂纹的概率,因而其疲劳强度就降低。

3、装配与连接效应

装配与连接效应对零件的疲劳寿命有很大影响。正确的拧紧力矩可使其疲劳寿命提高5倍以上,过大的拧紧力并非对提高连接的可靠性有利。

4、载荷特性

零件所受的载荷应力超过材料的疲劳极限时。定义为“超载”,低于疲劳极限的应力称为“次载”。对于高周疲劳,增大应力则会出现:a容易产生多个裂纹;b疲劳条带之间的距离增大;c最终瞬断区的面积增大。而金属在低于疲劳极限的应力下先运转一定次数后,则可以提高疲劳极限,这种次载荷强化作用称为次载锻炼。这种现象可能是应力应变循环产生的硬化及局部应力集中松弛的结果。

不同零件在工作时具有不同的载荷频率,载荷频率在一定范围内可以提高疲劳强度,这可能是和每一周次的塑性应变累积损伤量不同有关。

实际零件在工作时都是非连续(有间歇)运行的,当加载应力低于并接近于疲劳极限时,间歇加载提高疲劳效果比较明显,而间歇超载加载则会降低疲劳强度。因为在次载时有疲劳强化,间歇可进一步应变时效强化,故能提高疲劳强度;而在超载时因其损伤积累有疲劳弱化,间歇也不起作用。

5、材料的组织和性能

抗疲劳性能好的材料应当成分均匀,组织细小均匀,无内在连续缺陷,缺口敏感性小,循环韧性大。

在各类结构工程材料中,结构钢的疲劳强度最高。在结构钢中,碳具有固溶强化及与碳化物元素有弥散强化的作用,可提高材料的形变抗力;而合金元素主要是通过提高钢的淬透性和改善钢的强韧性来影响疲劳强度,细化晶粒可提高疲劳强度。钢的热处理组织中,细小均匀的回火马氏体较珠光体加马氏体及贝氏体加马氏体混合组织具有更佳的疲劳抗力;铁素体加珠光体组织钢材的疲劳抗力随珠光体组织含量的增加而增加;任何增加材料抗拉强度的热处理通常均能提高材料的疲劳抗力。铸铁,特别是球墨铸铁,具有足够的强度和极小的缺口敏感性,因此具有较好的疲劳性能。而非金属夹杂物、疏松、偏析等缺陷均使材料的疲劳抗力降低。因此,金属材料的组织不均匀性及其组织状态不良,材料选用不当或在生产过程中由于管理不善而错用材料是造成疲劳断裂的重要原因。

6、使用环境

环境因素(低温、高温及腐蚀介质等)的变化,会使材料的疲劳强度显著降低,往往引起零件过早的发生断裂失效。

一般来说,温度降低、疲劳强度升高;温度升高,疲劳强度降低。这是因为金属的变形抗力下降,使疲劳裂纹容易形成。高温下金属通常不存在疲劳极限。

腐蚀性环境对材料的静强度虽然有一定的影响,但其影响程度远不如它对疲劳极限的影响。通常,对腐蚀环境敏感的材料,其疲劳性能降低比较显著。如对于一般中等强度的合金结构钢,腐蚀环境可使其疲劳极限下降l/3~l/2。因此,腐蚀与疲劳叠加在一起,发生交互作用,于是腐蚀疲劳极限比在无腐蚀条件下的疲劳极限低。2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读