本书建立了一个与最优化原理足够贴近的代数系统。叫做Bellman半环,从而建立了离散动态规划的基本公理系统,证明了Bellman代数(包括极大代数和极小代数)是最优化原理成立的一个充分条件。
全书分三个部分共8章,以原理为基础,以Bellman代数为工具,讨论离散动态规划的基础理论、算法和应用。基本公理系统能够推广为一般公理系统,用以讨论k阶优化解问题、多目标非劣解问题,并建立匹配优化原理,得到了关于路和匹配的多种优化问题的求解公式。本书表明,离散动态规划是一门既具有公理化基础又具有代数工具的、专门讨论决策优化学问的应用数学分支。
本书可作为应用数学、管理科学等专业研究生学习教材和专业人员的参考书籍。