多级模型具有与其他主要一般线性模型(例如,ANOVA,回归)相同的假设,但是一些假设针对设计的分层性质(即,嵌套数据)而被修改。
线性假设表明变量之间存在直线(直线,非线性或U形)关系。但是,该模型可以扩展到非线性关系。
正态假设表明模型的每个级别的误差项都是正态分布的。然而,大多数统计软件允许人们为方差项指定不同的分布,例如泊松,二项式,逻辑。多级建模方法可用于所有形式的广义线性模型。
同方差性的假设,也称为方差的同质性,假设人口方差相等。然而,可以指定不同的方差 - 相关矩阵来解释这一点,并且方差的异质性本身可以被建模。
独立性是一般线性模型的假设,其表明案例是来自群体的随机样本,并且因变量上的分数彼此独立。多层次模型的主要目的之一是处理违反独立性假设的情况;然而,多级模型确实假设1)1级和2级残差是不相关的,2)最高级别的误差(由残差测量)是不相关的 。