简介
进化算法是一种智能的全局优化方法,它对函数本身性质要求非常低,往往只要求目标函数值是可以计算的,不要求它具有连续性、可微性及其它解析性质,同时它又是基于群体进化的算法,因此可采用进化算法解决约束优化问题。用进化算法解决约束优化问题的关键在于如何进行有效的约束处理,即如何有效均衡在可行区域与不可行区域的搜索。
常见的用于求解约束优化问题的进化算法有罚函数法、遗传算法、进化策略、进化规划、蚁群算法和粒子群算法等。
与传统方法相比的优势
(1) 在一般情况下,进化算法能否收敛到全局最优解与初始群体无关,而传统优化方法则依赖于初始解;
(2) 进化算法具有全局搜索能力,而很多传统优化方法往往会陷入局部最优;
(3) 进化算法的适用范围广,能有效地解决不同类型的问题,而传统优化方法在设计时往往就只能解诀某一类型的问题。
存在的不足
(1) 进化算法中的参数,如群体规模、进化代数、重组概率、变异概率等,往往需要根据经验设定,且在一定程度上与问题相关;
(2) 进化算法的收敛问题,进化算法求解实际问题时的收敛性判定缺乏理论指导。 2100433B