造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

超超临界我国发展700℃高效超超临界的技术瓶颈

2022/07/16198 作者:佚名
导读:高效超超临界机组相对于超超临界机组,蒸汽温度和压力参数的提高,对关键部件材料带来了更高和更新的要求,尤其是材料的热强性能、抗高温腐蚀和氧化能力、冷加工和热加工性能等,因此材料和制造技术成为发展先进机组的关键。 已经运营或处于设计建设阶段的超超临界机组, 温度参数大多在566~610℃,压力则分为25MPa、27MPa 和30~31MPa 三个级别。新高温铁素体-马氏体9%~12%铬材料已成功应用于

高效超超临界机组相对于超超临界机组,蒸汽温度和压力参数的提高,对关键部件材料带来了更高和更新的要求,尤其是材料的热强性能、抗高温腐蚀和氧化能力、冷加工和热加工性能等,因此材料和制造技术成为发展先进机组的关键。

已经运营或处于设计建设阶段的超超临界机组, 温度参数大多在566~610℃,压力则分为25MPa、27MPa 和30~31MPa 三个级别。新高温铁素体-马氏体9%~12%铬材料已成功应用于31MPa、600℃/610℃参数。经过各高温高压部件近10多年的应用,该材料系列已相当成熟,并形成了标准的市场采购规范。高效超超临界技术采用更高的蒸汽温度700℃以及更高的蒸汽初压力,对材料提出了更苛刻的要求。

发达国家对于先进发电技术所需的材料均有相应的研究战略,对电厂材料的蠕变、疲劳等长时性能研究也有长期规划,并建立了数据共享平台,积累了大量的材料性能数据。如欧洲蠕变合作委员会(ECCC)和日本材料所的数据共享平台,多数常用材料的持久强度试验时间均超过100000h,最长的达到20~30年。这些数据为机组的合理设计和安全可靠运行提供了有力的技术支持。

我国的高温材料基础研究较为薄弱,缺乏自主知识产权的高温材料数据库,这成为制约700℃高效超超临界发电技术发展的瓶颈。在材料方面有两大问题:第一,如何按照汽轮机使用间隔长的要求选择现有的镍材料,包括在补充长期高温性能试验的基础上对材料进行调整和优化;第二,汽轮机部件大型化,要求对铸锻、焊接、热处理等工艺性能进行研究,例如单个锻件的尺寸加大,质量达到8~10t。

可选择的材料有转子及阀门汽缸的617、625;高温管道的617、740、263;螺栓的M252等。根据汽轮机的强度要求,材料的长期高温性能以达到100MPa 为目标,长期性能试验(从20000h、30000h到100000h)的代价非常大。上述材料在长期性能以及锻件大型化的基础上是否要进行成分的优化调整(例如日本对用于转子的617 材料、用于螺栓的M252 材料都进行了微量元素的调整),调整必将增加研究的周期及资金和人力投入。大型化铸锻件(阀门、转子锻件、汽缸)工艺、热处理规范的研究投入以及实物的运行试验研究周期长、投入大,根据AD700 的报道,仅这方面的投入费用就达到近6000万欧元。同时,镍基高温合金的机械加工切削性能比较差,而汽轮机转子和汽缸的结构型式复杂,必须经过大量的切削加工过程,因此必须针对加工制造工艺进行相应的试验研究,建立合适的加工方法和加工参数,选择合适的加工制造设备厂,设计合适的加工切削刀具、切削工艺参数,设计制造装夹工具、质量检验工具等。

由于电厂耐热材料与影响国计民生的能源和环境两大问题均关系密切,有必要制定相应的研究和开发战略,通过加大材料研发的力度,加大试验研究装置的建设和研究力量的投入。同时不放弃向国外吸取经验的机会,通过参与国际研发项目掌握新型耐热钢的特性,通过建立材料性能数据库和共享机制,并与国际数据平台合作,形成完整的材料技术支撑体系,促进高效超超临界等先进火力发电技术在我国的发展。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读