最早期的弦论叫做玻色弦理论,南部阳一郎给出了最早的作用量,但是该作用量在场论的框架内难以量子化。此后亚历山大·泊里雅科夫给出了一个等效的作用量,其几何含义是把时空坐标视为一个世界面的标量场,并且在世界面上满足广义相对论的一般坐标变换规则。除此之外,如果要求这个作用量同时满足在外尔变化下不变,那么自然的会要求这个世界面是一个二维的曲面。
玻色弦理论是最简单的一个弦论的模型,它最重要的物理图像是认为物理粒子不是单纯的点粒子,而是由于弦的振动产生的激发态。显然它有很大的缺点,其一是它只简单描述了标量玻色子,没有将费米子引入框架内;其二没有包含一般量子场论中的规范对称性;其三是当研究它的质量谱时候发现,它的真空态是一组质量平方小于零的不稳定快子。所有这些问题在推广到超弦理论后得到了很好的解释。