有些教材讲该结论适合一切电场。平行板电容器的电场只是无数电场中的一个特例, 用该场推导的结论不一定具有普遍性,所以有学者又用其他方法推导公式来验证此结论。下面首先对静电场中的一些能量公式进行分析对比, 指出静电能是电势能、自能或固有能、相互作用能的统称, 静电场的能量就是激发静电场的带电体系总的静电能。
静电场是保守力场或势场, 检验电荷q0在静电场中某点p 的电势能可表示为
式中Up 是静电场中p 点的势能。q0 的电势能实际上是检验电荷和静电场(或产生静电场的场源电荷)构成的带电体系所共有的,所以电势能也称带电体系的相互作用能, 又称带电体系的静电能, 属于该带电体系总静电能的一部分.
一个孤立的带电体其静电能称为自能或固有能。用做功的方法来定义,设物体带电量为Q 时, 其电势为U , 则带电体整个荷电过程中, 外界反抗电场力所做的功转化为该带电体的静电自能W , 写成
同相互作用能比较可知, 带电体的自能本质上是带电体上各部分电荷之间的相互作用能。
这种体系可以是一个带电体或若干个带电体, 各带电体的自能再加上它们之间的相互作用能便是整个带电体系的总静电能。设带电体的体积为V , 电荷分布的体密度为ρ(x , y , z), 其总静电能为:
积分遍及带电体全部体积V 。U 为被积带电体体积元所在处的电势, 此电势是所有其它带电体及被积带电体积元电荷共同产生的。