造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

空间膜结构结构计算

2022/07/16105 作者:佚名
导读:3. 一般规定 2) 膜结构的计算分析方法很多,目前得到公认并被广泛应用的主要有三种:非线性有限元法、动力松弛法和力密度法。 3) 非线性有限元法是将膜结构进行有限元离散,采用大μ移小应变的几何非线性有限元方法对膜结构进行分析,得到的结构的位移和内力。 4) 动力松弛法是将膜结构离散为节点和节点间的连接单元,通过对各节点施加激振力使之产生振动,然后逐步跟踪各点的振动过程直至最终求得结构平衡状态。

3. 一般规定

2) 膜结构的计算分析方法很多,目前得到公认并被广泛应用的主要有三种:非线性有限元法、动力松弛法和力密度法。

3) 非线性有限元法是将膜结构进行有限元离散,采用大μ移小应变的几何非线性有限元方法对膜结构进行分析,得到的结构的位移和内力。

4) 动力松弛法是将膜结构离散为节点和节点间的连接单元,通过对各节点施加激振力使之产生振动,然后逐步跟踪各点的振动过程直至最终求得结构平衡状态。

5) 力密度法是将膜结构离散为由结点和杆件组成的索网结构,在给定的几何拓扑、支座位置和力密度值(即索力与索长之比)下,通过求解结点坐标的线性方程组来确定结构的变形。

6) 膜结构中的索、膜构件只能承受拉力、不能承受压力和弯矩作用,对外荷载的抵抗主要通过变形来实现,因而膜结构在外荷载作用下变形较大,计算时应考虑结构的几何非线性。膜材是非线性材料,其应力应变曲线在应力较大时变化较大,但通常设计应力比断裂强度小的多,此时可近似认为膜材是线弹性的。

7) 由于支承结构变形对膜结构内力分布影响较大,故膜结构设计时宜考虑膜与支承结构协同工作。对于骨架支承式膜结构,由于支承结构为钢性体系(如钢桁架、拱或网架等),变形较小,故计算时可将膜与钢性骨架连接处近似视为固定支承边界。对于其他形式的膜结构,计算时应将膜与支承体系一起进行整体分析。

8) 膜结构自重较小,地震对结构的影响也较小,故设计时可不考虑地震作用,单地震对支承结构(包括骨架支承式膜结构的承重骨架)的影响应予考虑。

4. 初始形态分析

1) 在膜结构初始平衡曲面内预张力是自相平衡的。膜结构的平衡曲面可分为两类:等应力曲面和非等力曲面。等应力曲面是指膜面内预张力均匀分布,此时膜面面积最小(即最小曲面)。非等应力曲面是指膜面内预张力不均匀分布单自相平衡。膜结构初始形态分析宜首先寻找应力均匀的最小曲面,在最小曲面不存在的情况下再寻找应力不均匀的平衡曲面。

2) 膜结构的形态分析实际上是确定结构中预张力大小和分布的过程。预张力值的设定应保证膜材在正常使用形态下不会因温度、徐变和荷载作用等而发生松弛,并应保证膜材在极端气候条件下最大应力小于设计应力,同时应考虑结构张拉的实现和安装方便。

3) 本条给出的初始预张力最小值,是参考国内外膜材应力应变试验结果和工程经验提出的。

5. 荷载效应分析

1) 当膜结构在荷载作用下产生较大应力或变形时,应返回初始形态确定阶段对膜结构进行调整。通常可调整初始预张力大小和分布、调整结构外形或增加加强数量等。

2) 膜结构自重较小,属风敏感结构,在风荷载作用下易产生较大的变形和振动。对膜结构风振过程的研究,目前尚处于起步阶段,可借鉴的资料较少。膜结构形态各异,很难用统一的风振动力系数来描述,因此对形象负复杂、跨度较大或重要的建筑物,必须进行风振动力分析或进行气弹性模型风洞试验,以确定风荷载动力影响。对较常用的骨架支承式膜结构和整体张拉式伞形和鞍形膜结构,本规程采用风振系数来考虑结构在风荷载作用下可能的最大影响应与平均风响应之比,便于工程设计应用。

3) 迄今,我国膜结构设计都参照国外规范采用单一安全系数设计方法。

4) 各国对安全系数K的取值不尽相同:大多数国家都按短期荷载和长期荷载取值,其值分别在3~4和6~8的范围内。如美国的安全系数取3~8;日本临时(短期)荷载下取4,持久(长期)荷载下取8.我国在工程设计中也分别采用4与8.计算结构抗力时所采用的材料强度值则与膜材强度平均值较为接近。本规程根据国家标准《建筑结构可靠度设计统一标准》GB50068的要求给出的膜材强度标准值比过去采用的强度平均值降低约15%。

5) 对于体育场看台挑蓬一类的整体张拉式膜结构,其整体位移可定义为内环的最大位移;对于索系支承式膜结构,其整体位移可定义为跨中最大位移。膜结构在荷载效应分析时的膜单元,是指由柔性索边界或钢性边界围起的一片膜。膜单元名义尺寸,对于三角形膜单元可定义为最小变长的2/3;对于四边形膜单元可定义为通过最大位移点的边界间的最小跨度。

6) 出现松弛将降低膜结构的刚度,在风荷载作用下易发生剧烈振动,甚至导致膜材撕裂。此外松弛还将影响结构的美观和排水性能。因此,应尽量避免膜材在正常使用状态(第一类荷载效应组合)下出现松弛。

7) 索是膜结构中的重要受力构件,一旦处于受压状态,就有可能导致结构变为机动体,因此规定,索在第一类荷载效应组合下均应处于受拉状态。

6. 裁剪分析

1) 裁剪分析的目的是确定裁剪线和裁剪片,以便在并拢张拉后实现初始状态下的膜曲面,所以,裁剪分析应根据初始状态的膜曲面和预张力进行。通过初始形态分析可以确定膜曲面的形状。该曲面是由一定幅宽的膜材,经过裁剪程膜片,并相互连接后张拉而成。膜曲面上的膜片间的连接线为裁剪线。裁剪膜片是待求平面,而膜曲面上的膜片是空间的,并且在裁剪线确定后是已知的,所以确定平面裁剪膜片的关键是如何将已知的空间膜片展开成平面裁剪膜片。实际生成的曲面和形态分析所得的曲面之间的误差,取决于空间膜片展开成平面的精度。由于膜曲面上的空间裁剪片具有预张力,所以确定平面裁剪片时还必须考虑预张力释放后的几何尺寸改变。

2) 膜材的裁剪线可采用测地线法、平面相交法或其他有效的方法确定。测地线法是指在膜结构初始预应力平衡曲面上寻找测地线作为裁剪线。测地线指曲面上两点之间距离最短的线。对于可展曲面,展开平面上的测地线为直线;对于不可展曲面,展开平面上的测地线接近直线。平面相交法是指在膜结构初始预应力平衡曲面上,用一组平面按一定规律与曲面相交,并将各交线作为裁剪线。测地线线法得到的膜片宽度较为接近,节省膜材,单在曲面上形成的热合线美观性和视觉性效果较差。平面相交法可根据需要得到具有美观性和一定视觉效果的裁剪线。裁剪分析时应综合考虑经济性和美观性两个因素后确定裁剪。

3) 由于膜材在裁剪线处断开,故此处易产生应力集中。如果裁剪线处剪应力较大会影响膜材的受力性能,所以应尽量做到裁剪线与膜材纤维正交,使主应力方向与纤维方向一致,避免裁剪线受剪。

4) 膜结构曲面的形成与初始预张力作用有关,裁剪时必须考虑膜材应力释放后的弹力回缩。通常根据初始预张力大小和所用膜材的性能,通过修正裁剪膜片几何尺寸(沿径向和纬向回缩)来消除膜内预张力的影响。

7. 空气支承膜结构计算要点

1) 空气支承膜结构是通过保持内部气压来维持结构形状并抵抗外荷载的。同时,内压又是作用在结构上的荷载,应与其他荷载一起参与组合。内压是结构设计中的一个可变参数,可以根据外荷载的情况加压或减压,以调整结构的刚度和强度。最大工作内压是指当结构处于不利的外界环境时,如由于积水(雪)造成膜的凹陷,由设计人员为操作人员确定的可以使用的最大内压。确定最大工作内压应考虑材料的设计强度、外界荷载类型等多种影响因素。

2) 最小工作内压是指在正常气候和使用条件下,保持结构稳定所需的最小压力值。当恒荷载被分散到一定的影响区域时,最小工作内压应超过单位面积上恒荷载的最大值。

3) 正常工作内压是由设计人员确定的一个压力范围,在正常工作内压下,结构在常遇荷载作用下能够保持稳定。正常工作压力应根据使用情况和进出情况,在最小工作内压至最大工作内压之间变化。在公共聚会场所,为保证环境的舒适度,应适当减小出入口处的风速和作用在门上的压力,工作内压不宜超过287Pa。对主要用于仓储的场所,当车辆进出时工作内压值可以取大一些,以保证结构的稳定性。

4) 锚固体系应根据结构的性质(临时性、办临时性或永久性)选择。基础锚固体系在拉力或浮力作用下易产生短期和长期徐变,从而使上部结构体系和基础锚固体系间产生不确定的附加荷载作用。应认真设计空气支承膜结构的所有锚固构件。

5) 出入口处的门框与周边的膜应分别设计,以保证门框不受到膜结构变形的影响。此外门框与膜的连接,应做到在门框结构受荷载变形时不会使周边的膜产生过大的应力。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读