基于能源的可持续发展和环境污染的考虑,可再生能源(如生物乙醇)获得了越来越多的关注。纤维素物质储量巨大,热解技术可以快速的将它分解成以内醚糖为主的热解液。内醚糖不能直接被转化成乙醇,但可以通过酸催化水解成葡萄糖,从而被微生物发酵,也可以通过基因工程改造获得乙醇发酵菌株直接发酵内醚糖生产乙醇。主要成果包括:(1)热解液经过硫酸水解、Ba(OH)2 中和和 2:1体积的乙酸乙酯分三次萃取进行脱毒后,改造的大肠杆菌Escherichia coli 11177能有效发酵水解液为乙醇,所得乙醇产率为0.40 g乙醇/g葡萄糖。但在相同的条件下,Z. mobilis 11020却不能。发酵罐扩大发酵,缩短了发酵时间。E. coli 的乙醇生产效率可达到约0.71 g/L h,高于大部分文献报道的效率值。构建的数学动力学模型符合Logistic模型,可准确描述菌体的生长,而分别描述基质消耗和底物生成的动力学模型 和 能很好的模拟实测值,将来有望指导中试生产。(2)对运动发酵单胞菌进行甲酸、乙酸、糠醛、5-羟甲基糠醛和苯酚的细胞毒性测试,确定这5个化合物对运动发酵单胞菌生长的抑制浓度分别为0.7、5.3、1.9、9.0和1.7 g/L。而单个化合物10%的抑制浓度的混合物,即0.07 g/L甲酸、0.53 g/L乙酸、0.19 g/L糠醛、0.9 g/L 5-羟甲基糠醛和0.17 g/L苯酚的混合物,便可抑制细胞生长。(3)利用低能离子注入介导转基因技术对Saccharomyces cerevisiae 2.399进行低能N 离子刻蚀发现,在注入能量为15 keV、注入剂量为10×1015 ions/ cm2的条件下,S. cerevisiae 2.399的细胞自我修复作用最强,存活率达到25%,乙醇产率约为0.42 g乙醇/g葡萄糖(达到理论产率的84%),与乙醇发酵相关的丙酮酸脱羧酶和乙醇脱氢酶酶活值分别约为0.53和2.47(μmol/mL min)。(4)通过三种不同方法尝试构建工程菌,以反转录得到的内醚糖激酶基因为目的基因构建的工程菌利用内醚糖的效率最低;其次为进一步插入了酿酒酵母信号肽基因的工程菌;利用内醚糖和转化乙醇效率最好的是以优化过密码子的内醚糖激酶基因为目的基因构建的工程菌。本研究为大规模利用纤维素生产生物乙醇提供了一条重要途径和技术支撑。 2100433B